

■ TECHNICAL CATALOGUE

November 2010

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

www.aron.it - sales@brevinifluidpower.com

General terms and conditions of sale: see website www.aron.it

TECHNICAL CATALOGUE ARON 2010

Сн. І	DIRECTIONAL CONTROL	1
Сн. ІІ	Pressure control	2
Сн. III	FLOW CONTROL	3
Сн. IV	Modular valves	4
Сн. V	CARTRIDGE VALVES ACCORDING TO DIN	5
Сн. VI	IN LINE VALVES (SEE BREVINI FLUID POWER CARTRIDGE CATALOGUE)	6
Сн. VII	Subplates	7
Сн. VIII	Proportional control	8
Сн. ІХ	ELECTRONICS	9
Сн. Х	Systems	10
Сн. ХІ	STACKABLE VALVES	11
Сн. XII	DC / AC STANDARD COILS	12

"UL RECOGNIZED" COILS

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product. The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

						O 100 C 2 2
	lunev		AD.5.Rl		AM.3.UP1	
INDEX		ADC.3.E	Ch. I Page 44	AM.3.VI	Ch. IV Page 8	
	A A.66		ADH.5	Ch. I Page 5	AM.3.VM	Ch. IV Page 9
	A.88	Ch. IV Page 19	ADH.7	Ch. I Page 48	AM.3.VR	Ch. IV Page 9
	AD.2.E	CH. IV PAGE 33	ADH.8	Ch. I Page 52	AM.3.VS	Ch. IV Page 13
	AD.3.D	Ch. I Page 4	ADL.06.6	Ch. I Page 57	AM.3.XMP	Ch. IV Page 15
	AD.3.E	Ch. I Page 17	ADL.10.6	Ch. I Page 64	AM.5.CP	Ch. VIII Page 26
	AD 0 F II	Ch. I Page 11	ADP.5.E	Ch. I Page 66	AM.5.H	Ch. IV Page 26
	AD.3.EJ* AD.3.I	Ch. I Page 12	ADP.5.V	Ch. I Page 36	AM.5.QF	Ch. VIII Page 17
	AD.3.L	Ch. I Page 41	ADPH.5	Ch. I Page 39	AM.5.RGT	Ch. IV Page 31
	AD.3.M	Ch. I Page 14	AM.2.QF	Ch. I Page 45	AM.5.SH	Ch. IV Page 34
	AD.3.O	Ch. I Page 17	AM.2.UD	Ch. IV Page 5	AM.5.UD	Ch. IV Page 30
	AD.3.P	Ch. I Page 16	AM.2.UP	Ch. IV Page 2	AM.5.UP	Ch. IV Page 22
	AD.3.RI	Ch. I Page 16	AM.2.VM	Ch. IV Page 3	AM.5.VI	Ch. IV Page 23
	AD.3.V	Ch. I Page 43	AM.3.ABU	CH. IV PAGE 4	AM.5.VM	Ch. IV Page 24
	AD.3.XD	Ch. I Page 13	AM.3.CP	CH. III PAGE 4	AM.5.VR	CH. IV PAGE 24
	AD.3.XS	Ch. I Page 24	AM.3.H	CH. IV PAGE 11 CH. VIII PAGE 16	AM.5.VS	Ch. IV Page 27 Ch. IV Page 29
	AD.5.D	Ch. I Page 24	AM.3.QF	Ch. IV Page 17	AM.7.QF	Ch. IV Page 29
	AD.5.E	Ch. I Page 33	AM.3.RD	Ch. IV Page 12	AM.7.UP	Ch. IV Page 36
	AD.5.EJ*	Ch. I Page 31	AM.3.RGT	Ch. IV Page 20	AM.66	Ch. IV Page 18
	AD.5.EQ5	Ch. I Page 32	AM.3.SD	Ch. IV Page 12	AM.88	Ch. IV Page 32
	AD.5.I	Ch. I Page 32	AM.3.SH	Ch. IV Page 16	В ВА.130 / ва.10	
	AD.5.L	Ch. I Page 42	AM.3.UD	Ch. IV Page 7	BC.06.25/27	Ch. X Page 2
	AD.5.O	Ch. I Page 34	AM.3.UP	Ch. IV Page 8	BC.06.30/32	Ch. VII Page 14
_		Ch. I Page 33				Ch. VII Page 15
						40 (00 40 /

BC.06.40		BC.5.41/*		BS.3.10/11	
BC.06.41/*	Ch. VII Page 15	BC.5.50	Ch. VII Page 25	BS.3.12/13	Ch. VII Page 8
BC.06.XPQ3	Ch. VII Page 15	BC.5.51	Ch. VII Page 26	BS.3.14/15	Ch. VII Page 8
BC.06.XQ3	Ch. VII Page 13	BM.2	Ch. VII Page 26	BS.3.16/17	Ch. VII Page 8
BC.10.06	Ch. VII Page 13	BM.2.50	Ch. VII Page 5	BS.3.2	Ch. VII Page 8
BC.2.50.AB	CH. VII PAGE 27	BM.2.60	Ch. VII Page 6	BS.3.20/21	Ch. VII Page 3
BC.2.50.PT	Ch. VII PAGE 4	BM.2.70	Ch. VII Page 5	BS.3.W	Ch. VII Page 9
BC.2.51	Ch. VII Page 4	BM.3	Ch. VII Page 6	BS.5.**	Ch. VII Page 9
BC.3.07	Ch. VII Page 4	BM.3.50	Ch. VII Page 16	BS.5.12	Ch. VII Page 19
BC.3.08	CH. VII PAGE 12	BM.3.52	Ch. VII Page 17	BS.5.13	Ch. VII Page 20
BC.3.09	CH. VII PAGE 13	BM.3.60	Ch. VII Page 18	BS.5.14	Ch. VII Page 20
BC.3.107	CH. VII PAGE 13	BM.3.70	Ch. VII Page 16	BS.5.15	Ch. VII Page 20
BC.3.25/27	CH. VII PAGE 12	BM.3.72	Ch. VII Page 17	BS.5.16	Ch. VII Page 20
BC.3.30/32	CH. VII PAGE 10	BM.5	Ch. VII Page 18	BS.5.17	Ch. VII Page 21
BC.3.40	CH. VII PAGE 10	BM.5.50	Ch. VII Page 28	BS.5.29	Ch. VII Page 21
BC.3.41/*	Ch. VII Page 10	BM.5.60	Ch. VII Page 28	BS.5.3	Ch. VII Page 23
BC.3.50	Ch. VII Page 11	BM.5.70	Ch. VII Page 29	BS.5.30/31	Ch. VII Page 21
BC.3.51	Ch. VII Page 12	BM.5.80	Ch. VII Page 29	BS.5.RGA	Ch. VII Page 22
BC.5.07	Ch. VII Page 12	BS.2.**	Ch. VII Page 29	BS.5.RIA	Ch. X Page 5
BC.5.107	Ch. VII Page 27	BS.2.12	Ch. VII Page 2	BS.VMP.10	Ch. X Page 5
BC.5.30/32	Ch. VII Page 27	BS.2.14	Ch. VII Page 2	BS.VMP.16	Ch. VII Page 9
BC.5.36/28	Ch. VII Page 26	BS.2.16	Ch. VII Page 2	BS.VMP.20	Ch. II Page 11
BC.5.3A	Ch. VII Page 24	BS.2.20	Ch. VII Page 3	BS.VMP.25	Ch. VII Page 23
BC.5.40	Ch. VII Page 27	BS.3.**	Ch. VII Page 3	BS.VMP.25/1	Ch. II Page 11
	Ch. VII Page 25		Ch. VII Page 7		Ch. II Page 11

BSC.5.69		CMP.16/25 / CMP.E.16/25	KEC.16.UE / KEC.16.UN	
BSH.5.13	Ch. X Page 4	CH. V PAGE 11	Сн. V Page 10 КЕС.25.CQ	
BSH.5.17	Ch. I Page 51	CH. I PAGE 19	Сн. V Page 6 KEC.25.ME	
BSH.5.31	Ch. I Page 51	CH. V PAGE 11 CUP.16/25 / CUP.E.16/25	Сн. V Page 10 КЕС.25.MP	
	Ch. I Page 51	CH. V PAGE 11	CH. V PAGE 10 KEC.25.PC	
BSH.7.12	Ch. I Page 55	Сн. XI Раде 11	Сн. V Раде 7 КЕС.25.RС	
BSH.7.13	Ch. I Page 55	Ch. XI Page 14	Ch. V Page 7	
BSH.7.14	Ch. I Page 55	F FE.3 FELS.3 / FU.3	KEC.25.RI Ch. V Page 6	
BSH.7.15		Ch. XI Pag. 23-24	KEC.25.SH Ch. V Page 8	
BSH.7.16	Ch. I Page 56	Сн. XI Рад. 19, 20	KEC.25.SL Ch. V Page 10	
BSH.7.17	Ch. I Page 56	FE10LS.3 Ch. XI Pag. 21	KEC.25.SP	
BSH.8.13*	Ch. I Page 56	FE10.P Ch. XI Pag. 22	Сн. V Раде 8 KEC.25.UE	
BSH.8.13	Ch. I Page 60	FI.3 Ch. XI Pag. 10	CH. V PAGE 10	
BSH.8.15	Ch. I Page 60	J JC.3.D	CH. V PAGE 10	
BSH.8.17	Ch. I Page 60	Ch. IX Page 27	Сн. V Раде 3 KEL.16/25	
B5H.8.17	Ch. I Page 60	Ch. IX Page 29	Ch. V Page 5 KRA.16/25	
С		JC.F.D Ch. IX Page 31	Ch. V Page 12	
C*P	Ch. V Page 9	к	L LVDT	
CD.3.E		KEC.**.**. Ch. V Page 3	CH. I PAGE 21	
CDC.3.E	CH. XI PAGE 5	KEC.**.M*/U*/SL	Ch. I Page 20	
CDL.04.6	CH. XI PAGE 2	CH. V PAGE 9	Ch. XI Page 9	
CDL.06.6	Ch. I Page 61	CH. V PAGE 6 KEC.16.ME / KEC.16.MP	M P	
CDL.10.6	Ch. I Page 63	CH. V PAGE 10 KEC.16.PC	PVR.3 Ch. II Page 2	
CEP.S	Ch. I Page 65	Сн. V Page 7	PVR.5 Ch. II PAGE 4	
CM02.3.P	Ch. IX Page 2	CH. V PAGE 7	PVR.U.3	
CM.3.M	Ch. XI Page 16	CH. V PAGE 6 KEC.16.SH / KEC.16.SP	PVR.U.5	
	Ch. XI Page 17	CH. V PAGE 8	PVS.3	
		Ch. V Page 10	Ch. II Page 2	

DVC F	XDC.3.A / XDC.3.C
PVS.5	CH. VIII PAGE 8
PVS.U.3	XDP.3.A / XDP.3.C
CH. II PAGE 2	XDP.5.A / XDP.5.C
Ch. II Page 4	CH. VIII PAGE 6
Q	CH. VIII PAGE 10
QC.3.2	Ch. VIII Page 13
Ch. III Page 2 QC.3.3	XP.3
Ch. III Page 3	XQ.3
R	CH. VIII PAGE 18
REM.D.RA	CH. VIII PAGE 20
Ch. IX Page 4	CH. VIII PAGE 22
Ch. IX Page 7	J
S	
SE.3.AN21	
CH. IX PAGE 11	
CH. IX PAGE 13 SE3.LN304	
CH. IX PAGE 15	
Ch. IX Page 19 Studs - MODULAR VALVES	
CETOP 2 Ch. IV Page 6 CETOP 3 Ch. IV Page 21 CETOP 5 Ch. IV Page 35	
SVP	
Ch. IX Page 23	
Т	
V	
V.M.L / V.S.L / V.U.L	
CH. II PAGE 6	
Ch. II Page 6	
x	
XD.3.A / XD.3.C	
O., 188 D. O.	

Ch. VIII Page 2

TECHNICAL CATALOGUE

ABBREVIATIONS

AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	LOW PRESSURE CONNECTION
C	Stroke (MM)
CH	A CROSS FLATS
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I%	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
P	LOAD PRESSURE (BAR)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	Pump flow (L/MIN)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

General terms and conditions of sale: see website www.aron.it

Oaron

CETOP 2/NG04

CETOP 2/NG04	
	Ch. I page 2
AD.2.E	
	Ch. I page 4
"A09" DC coils	
	CH. I PAGE 4

"D15" DC COILS CH. I PAGE 18 "K12" AC SOLENOIDS CH. I PAGE 18 STANDARD CONNECTORS CH. I PAGE 19 "LE" VARIANTS FOR ADC3/AD3 CH. I PAGE 20 L.V.D.T. CH. I PAGE 21

ATEX 94/9/CE DIRECTIVE

ATEX 94/9/CE DIRECTIVE	
	Ch. I page 22
AD.3.X*	
	Ch. I page 24

CETOP 5/NG10

CETOP 3/NG06

ADC.3	
	Ch. I page 5
"A09" DC coils	
	Ch. I page 7

avou

CETOP 5/NG10	
	CAP. I PAG.28
AD.5.E	
	CAP. I PAG.31
AD.5.EJ* AND AD.5.EQ5	
	Ch. I page 32
AD.5.O AND AD.5.D	
	Ch. I page 33
AD.5.L	
	Ch. I page 34
"A16" DC coils	Ch. I page 35
"K16" AC SOLENOIDS	Ch. I page 35

CETOP 3

CETOP 3/NG06	
	CH. I PAGE 8
AD.3.E	
	Ch. I page 11
AD.3.EJ*	
	Ch. I page 12
AD.3.V	
	Ch. I page 13
AD.3.L	
	CAP. I PAG.14
CETOP 3/NG06 OTHER OPERA	TORS
	Ch. I page 15
AD.3.P AND AD.3.O	
	Ch. I page 16
AD.3.M AND AD.3.D	
	CH. I PAGE 17

CETOP 5/NG10 High performances

ADP.5.E	
	Ch. I page 36
D40 DC C	0100
"D19" DC Solenoids	Ch. I page 38
ADP.5.V	
ADI .5.V	
	CH. I PAGE 39
	On: Trial 00
"D19" DC SOLENOIDS	Ch. I page 40
2.0 20 0022.10.50	0

AUTOMATIC RECIPROCATING VALVES

AD.3.I	Ch. I page 41
AD.5.I	Ch. I page 42
AD.3.RI	Ch. I page 43
AD.5.RI	Ch. I page 44

PILOTED VALVES AND SUBPLATE MOUNTING

ADPH.5	
	01 45
	Ch. I page 45
ADH.5	
	Ch. I page 48
BSH.5	CH. I PAGE 51
ADH.7	
	Ch. I page 52
	OH. I PAGE 32
BSH.7	Ch. I page 55
ADH.8	
	CH. I PAGE 57
	OH. I PAGE 37
BSH.8	Ch. I page 60
DOI 1.0	On. I Trial 00

FLOW DIVERSION VALVES

CDL.04.6 "OEM MACHINERY"	
	CH. I PAGE 61
CDL.06.6 "OEM MACHINERY"	
	CH. I PAGE 63
ADL.06.6 "OEM MACHINERY"	
	CH. I PAGE 64
CDL.10.6 "OEM MACHINERY"	
	Ch. I PAGE 65
ADL.10.6 "OEM MACHINERY"	
	CH. I PAGE 66
"A09" AND "D15" DC COILS	CH. I PAGE 67
"40W" AND "A16" DC COILS	Ch. I page 68

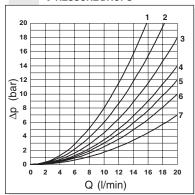
CETOP 2/NG04		
AD.2.E	Ch. I page 4	
"A09" DC Coils	Ch. I page 4	
STANDARD CONNECTORS	Ch. I page 19	

DIRECTIONAL CONTROL VALVES CETOP 2/NG4 () (1701)

The ARON directional control valves NG4 are designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 02 - 01 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-02), and are the smallest on the market in their category whilst still featuring excellent performance.

The use of solenoids with wet armatures ensures quiet operation, means that dynamic seals are no longer required and important levels of counter-pressure are accepted on the return line. The solenoid's tube is screwed at valve body directly, while a locking ring nut seal the coil in right position.

The cast body with a great care in the design and production of the ducts of the 5 chambers have made it possible to improve the spools allowing relatively high flow rate with low pressure drops (Δp).


The spool rest positions are obtained by means of springs which centre it when there is no electrical impulse. The solenoids are constructed to DIN 40050 standards and are supplied by means of DIN 43650 ISO 4400 standard connectors which, suitably assembled, ensure a protection class of IP 65.

The solenoid coils are normally arranged for DIN 43650 ISO 4400 type connectors (standard version). On request, could be available the following coil connection variants: AMP Junior connections; flying leads connections, with or without integrated diode; Deutsch connections with bidirectional integrated diode.

The supply may be in either DC or AC form (with the use of a connector and rectifier) in most common voltage.

The valves are designed for use with DIN 51524 standard hydraulic mineral oils and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638, $\beta_{ne} \ge 75.$

PRESSURE DROPS

Spool	Connections				
type	P- / A	Р⊸В	A→T	B→T	$P\to T$
01	4	4	6	6	
02	6	6	7	7	5
03	4	4	7	7	
04	1	1	2	2	3
05	6	6	4	4	
66	5	5	5	7	
06	5	5	7	5	
15	4	4	4	4	
16	5	5	6	6	
20*	5	5	6	6	
	Curve No.				

* = with energized spool

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral based oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For higher flow rates than those in the diagram the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \times (Q1/Q)^2$$

where Δp will be the value for the losses for a specific flow rate Q which can be obtained from the diagram, $\Delta p1$ will be the value of the losses for the flow rate Q1 that is used.

0	ORDERING CODE		
AD	Directional valve		
2	CETOP 2/NG4		
E	Electrical operator		
**	Spool (tables next page)		
*	Mounting (table 1 next page)		
*	Voltage (table 2 next page)		
**	Variants (table 3 next page)		
3	Serial No.		

TAB. 1 MOUNTING STANDARD A O B Wh A B K A O M WO B MAO VP aZ OBW

a A O To

a/ 0 B b

a A B To

C

D

Ε

F

G

Н

I

L

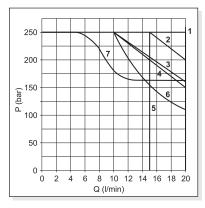
M

TAB.3-VARIANTS

VARIANT	CODE
No variant	00
Viton	V1
Pilot light	X1
Rectifier	R1
Emergency button	E1
Rotary emergency button	P1 (*)
Solenoid valve without connectors	S1
Cable gland "PG 11"	C1
Viton + Pilot light	VX
Viton + Rectifier	VR
Pilot light + Rectifier	XR
AMP Junior connection	AJ
Solenoid with flying leads (250 mm)	FL
Solenoid with flying leads (130 mm)	
and integrated diode	LD
Deutsch connection with bidir. diode	CX
Coil 8W (only 24V)	W8
Other variants relate to a special des	ign

(*) P1 Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

Tab.2 - A09 (27 W) Coll


DC VOLTAGE			
L	12V		
M	24V		115Vac/50Hz 120Vac/60Hz
N	48V*	_	with rectifier
Р	110V*		000)/ /5011
Z	102V* ←		230Vac/50Hz 240Vac/60Hz
X	205V* ←	」 ′	with rectifier
W Without DC coils			
Voltage codes are not stamped on the			

plate, their are readable on the coils.

* Special voltage

- Mounting type D is only for solenoid valves with detent
- In case of mounting D with detent, the supply to solenoid must be longer than 100 ms.
- The AMP Junior coil and with the flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.
- The Deutsch coil with bidirectional diode is available in 12V DC voltage only.

LIMITS OF USE (MOUNTING C-E-F)

Spool Type	Curves No
01	1
02	3
03	1
04	4
05	1
66	1
06	1
15	1(7*)
16	2(6*)
20	5

 (6^*) = 16 spool used as 2 or 3 way, follow the curve n°4 (7^*) = with 8W coil

The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 40°C. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40 C°. The values in the diagram refers to tests carried out with the oil flow in two directions simultaneously (e.g. from P to A and at the same time B to T). In case of valve 4/2 or 4/3 used with flow in one direction only, the limits of use could have variations which may even be negative.

Medium switching times Energizing: 20 ms De-energizing: 40 ms

Tests have been carried out by spool normally closed with flow of 10 l/min at 125 bar and a 100% supply, warm standard coil and without any electronic components. These values are indicative and depend on the following parameters: the hydraulic circuit, the fluid used and the variation of pressure, flow and temperature.

NOTE: Limits of use are available for C, E, F mounting.

STANDARD SPOOLS

Two solenoids, spring centred "C" mounting			
Spool Type	MA O B W	Covering	Transient position
01		+	
02		•	
03		+	
04*		-	
05		+	
66		+	
06		+	

ONE SOLENOID, SIDE A "E" MOUNTING			
Spool Type	a/AO	Covering	Transient position
01		+	
02		-	MHH
03		+	
04*		-	
05		+	MAR
66		+	
06		+	MHH
15		-	MHM
16		+	

(ONE SOLENOID, SIDE B "F" MOUNTING			
Spool Type	W O B TE	Covering	Transient position	
01	WIII	+		
02	w	-		
03	w#11	+		
04*	WHIND	-		
05	w#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+		
66	WHITE I	+		
06	with the	+		
15	WXIII	-	MHM	
16	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+		

Two solenoids "D" mounting				
Spool Type	Covering Transient position			
20*		+		

* Spools with price increasing

Max. pressure ports P/A/B
Max pressure port T (dynamic)
Max flow
Max excitation frequency
Duty cycle
Fluid viscosity
Fluid temperature
Ambient temperature
Max contamination level

250 bar 250 bar 250 bar 20 l/min 3 Hz 100% ED 10 ÷ 500 mm²/s $-25^{\circ}\text{C} \div 75^{\circ}\text{C}$ $-25^{\circ}\text{C} \div 60^{\circ}\text{C}$ class 10 in accordance with NAS 1638 with filter $\beta_{25}{\geq}75$ 0,88 Kg 1,1 Kg

Weight with one DC solenoid Weight with two DC solenoids

E = Manual override

Screws with material specifications min. 8.8 recommended - UNI 5931
Tightening torque of screws
M5x35 = 5 Nm / 0.5 Kgm.

DC coils A09

 Type of protection
 IP 65

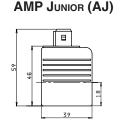
 (in relation to connector used)
 IP 65

 Number of cycle
 18.000/h

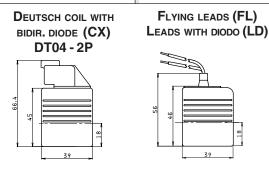
 Supply tolerance
 ±10%

 Ambient temperature
 -30°C ÷ 60°C

 Duty cycle
 100% ED


 Insulation class wire
 H

 Weight
 0,215 Kg



 The AMP Junior coil and with the flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.

 The Deutsch coil with bidirectional diode is available in 12V DC voltage only.

Voltage (V)	Max winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±7%
12V	123°C	27	5.3
24V	123°C	27	21.3
48V*	123°C	27	85.3
102V*	123°C	27	392
110V*	123°C	27	448
205V*	123°C	27	1577
* Special volta	ages	ETA09/AD	02-CDL04-C3V - 04/2001/e

(*) P1 Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

ADC.3.E...

"A09" DC Coils	Ch. I page 7
STANDARD CONNECTORS	CH I PAGE 19

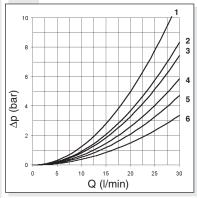
ADC.3... DIRECTIONAL CONTROL VALVES CETOP 3 SOLENOID OPERATED WITH REDUCED OVERALL SIZE OFFOR

The ARON NG6 directional control valves are designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03).

The use of solenoids with wet armatures allows an extremely safe construction completely dispensing with the need for dynamic seal. The solenoid tube is screwed directly onto the valve casting whilst the coil is kept in position by a ring nut.

The operation of the directional valve is electrical. The centring is achieved by means of calibrated length springs which, once the impulse is over, immediately reposition the spool in the neutral position. To improve the valve performance, different springs are used for each spool.

The solenoids, constructed with a protection class of IP65 in accordance with BS 5490 standards, are available in direct current form and different voltage. The electrical controls are equipped with an emergency manual control inserted in the tube.


The ADC.3 valve uses shorter solenoids than the standard AD.3.E to reduce the overall dimensions.

The solenoid coils are normally arranged for DIN 43650 ISO 4400 type connectors (standard version). On request, could be available the following coil connection variants: AMP Junior connections; flying leads connections, with or without integrated diode; Deutsch connections with bidirectional integrated diode.

The recommended fluids are hydraulic mineral based oils in accordance with DIN 51524 and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638, $\beta_{os} \ge 75$.

Max. pressure ports P/A/E	3/T 250 bar
Max flow	30 l/min
Max excitation frequency	3 Hz
Duty cycle	100% ED
Fluid viscosity	10 ÷ 500 mm ² /s
Fluid temperature	-25°C ÷ 75°C
Ambient temperature	-25°C ÷ 60°C
Max contamination level	class 10 in accordance
with NA	AS 1638 with filter B ₂₅ ≥75
Weight with one DC solen	oid 1,25 Kg
Weight with two DC solen	oids 1,5 Kg

PRESSURE DROPS

Spool	Connections				
Spool type	P⊸A	P <i>→</i> B	A →T	$B \rightarrow T$	P→T
01	4	4	4	4	
02	6	6	6	6	6
03	4	4	6	6	
04	3	3	2	2	5
15E-16E	6	3	1	5	
15F-16F	3	6	5	1	
	Curve No.				

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of $46 \, \text{mm}^2/\text{s}$ at $40 \, \text{C}^\circ$; the tests have been carried out at a fluid temperature of $40 \, \text{C}^\circ$. For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \times (Q1/Q)^2$$

where Δp will be the value for the losses for a specific flow rate Q which can be obtained from the diagram, $\Delta p1$ will be the value of the losses for the flow rate Q1 that is used.

ORDERING CODE

ADC	Directional valve
3	CETOP 3/NG6
E	Electrical operator
**	Spool (tables at the side)
*	Mounting (table 1)
*	Voltage (table 2)
**	Variants (table 3)
1	Serial No.

TAB.1 - MOUNTING STANDARD C WA O B WA E B A O W F WO B B SPECIALS (WITH PRICE INCREASING) G WA O B H B O B W

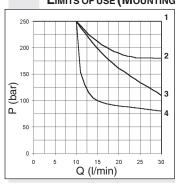
STANDARD SPOOL * SPOOLS WITH PRICE INCREASING Two solenoids, spring centred "C" Mounting Transient position Covering Spool MAJOBWA type 01 $X_{1}, Y_{1}, Y_{1},$ 02 03 04

0	ONE SOLENOID, SIDE A "E" MOUNTING				
Spool type	A O W	Covering	Transient position		
01		+			
02	a/XII	-			
03	a/XII	+	EZZ		
04*	a/ III/w	-			
15	a/XII/~	-			
16	a/XII/w	+	X1.1		

0	ONE SOLENOID, SIDE B "F" MOUNTING				
Spool type	W O B b	Covering	Transient position		
01	WIIII	+			
02	w	-			
03	WHILE	+			
04*	WHIXE	-			
15	wXIII-	-	XHI		
16	~~\XIII_F9	+	X1.1		

TAB.2 - A09 (27 W) COIL

	•				
	DC VOLTAGE				
L M N	12V 24V 48V*	115Vac/50Hz 120Vac/60Hz with rectifier			
P Z X W	110V* 102V* 205V* Without DC	230Vac/50Hz 240Vac/60Hz with rectifier			
Voltage codes are not stamped on the plate, their are readable on the coils.					
* Spe	ecial voltage				

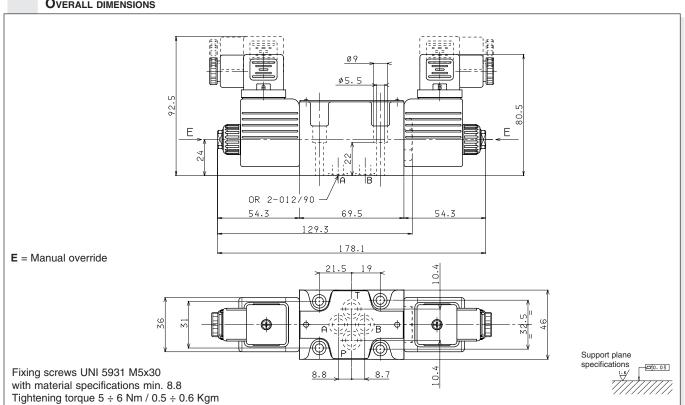

TAB.3 - VARIANTS

TABLO - VARIANTS	
No variant	00
Viton	V1
Pilot light	X1
Rectifier	R1
Solenoid valve without connectors	S1
Cable gland"PG 11"	C1
Viton + Pilot light	VX
Viton + Rectifier	VR
Pilot light + Rectifier	XR
Emergency button	E1
Rotary emergency button	P1 (*)
Rotary emergency button (180°)	P5 (*)
Variant with lever for emergency button	LE
AMP Junior connection	AJ
Coil with flying leads (250 mm)	FL
Coil with flying leads (130 mm) with diode	LD
Deutsch connection with bidirectional diode	CX
Other variants relate to a special design	

- The AMP Junior coil and with the flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.
- The Deutsch coil with bidirectional diode is available in 12V DC voltage only.

(*) P1 and P5 Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

LIMITS OF USE (MOUNTING C-E-F)


Spool type	n° curve
01	2
02	1
03	3
04	3
15-16	1(4*)

 (4^*) = 15 and 16 spools used as 2 or 3 way, follow the curve $n^{\circ}4$

The tests have been carried out with solenoids operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 50 C° . The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40 degrees C. The values in the diagram refer to tests carried out with the oil flow in two directions simultaneously (e.g. from P to A and at the same time B to T).

In the cases where valves 4/2 and 4/3 are used with the flow in one direction only, the limits of use could have variations which may even be negative (See curve No 4 and Spool No 15-16). The tests were carried out with a counter-pressure of 2 bar at T port.

OVERALL DIMENSIONS

A09 DC coils

Type of protection	
(in relation to connector used)	IP 65
Number of cycle	18.000/h
Supply tolerance	±10%
Ambient temperature	-30°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	Н
Weight	0,215 Kg

- The AMP Junior coil and with the flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.
- The Deutsch coil with bidirectional diode is available in 12V DC voltage only.

Voltage (V)	Max winding to (Ambient temper		RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±7%	AMP Junior (AJ)	DEUTSCH COIL + BIDIR. DIODE (CX) DT04 - 2P
12V	123°	С	27	5.3		
24V	123°	С	27	21.3		
48V*	123°		27	85.3		
102V*	123°		27	392		66.4
110V*	123°		27	448	94 46	45
205V*	123°	С	27	1577		81
* Special volta	AGES			ETA09 - 04/2001/e	39	39
	MANUAL RGENCY		*) ROTARY ERGENCYE		Rotary NCy 180°	FLYING LEADS (FL) LEADS + DIODE (LD)
75	67 28 67	75	56,5	75	39,5 max. 60,5	39

(*) P1 and P5 Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

CETOP 3/NG	06
STANDARD SPOOLS	Ch. I page 10
AD.3.E	Ch. I page 11
AD.3.EJ*	Ch. I page 12
AD.3.V	Ch. I page 13
AD.3.L	Ch. I page 14
OTHER OPERATOR	Ch. I page 15
AD.3.P	Ch. I page 16
AD.3.O	Ch. I page 16
AD.3.M	Ch. I page 17
AD.3.D	Ch. I page 17
"D15" DC Coils	Ch. I page 18
"B14" AC SOLENOIDS	Ch. I page 18
STANDARD CONNECTORS	Ch. I page 19
"LE" VARIANTS	Ch. I page 20
L.V.D.T.	Ch. I page 21

DIRECTIONAL CONTROL VALVES CETOP 3/NG6 () (TO)

INTRODUCTION

The ARON directional control valves NG6 are designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03), and can be used in all fields on account of their high flow rate and pressure capacities combined with compact overall dimensions.

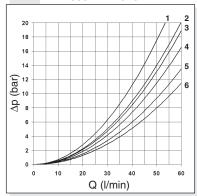
The use of solenoids with wet armatures allows a very practical, safe construction completely dispensing with dynamic seals; the solenoid tube is screwed directly onto the valve chest whilst the coil is kept in position by means of a lock nut.

The special, precise construction of the ports and the improvement of the spools enables relatively high flow rates to be accommodated with a minimal pressure drop (Δp).

The operation of the directional valves may be electrical, pneumatic, oleodynamic, mechanical or lever.

The centre position is obtained by means of calibrated length springs which reposition the spool in the centre or end of travel position once the action of the impulse is over.

The solenoids are constructed with a protection class of IP66 to DIN 40050 standards and are available in either AC or DC form in different voltage and frequencies.


The new type DC coil "D15", of cause their high performance, allows to increasing the limits of use respect to last series.

All types of electrical control are available, on request, with different types of manual emergency controls.

The solenoid coils are normally arranged for DIN 43650 ISO 4400 type connectors; is available on request these variant coils: with AMP Junior connections, with AMP junior and integrated diode, with Deutsch DT04-2P connections or solenoid with flying leads. Connectors with built in rectifiers or pilot lights are also available.

The valves are designed for use with DIN 51524 standard hydraulic mineral oils and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638, $\beta_{\infty} \ge 75$.

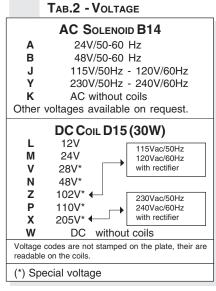
PRESSURE DROPS

Cannastiana

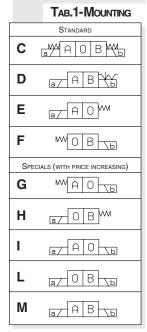
The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C ; the tests have been carried out at a fluid temperature of 40°C . For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \times (Q1/Q)^2$$

where Δp will be the value for the losses for a specific flow rate Q which can be obtained from the diagram, $\Delta p1$ will be the value of the losses for the flow rate Q1 that is used.


Spool		Co	nnectio	ns	
type	P <i>→</i> A	P→B	$A \rightarrow T$	$B \rightarrow T$	P→T
01	5	5	5	5	
02	6	6	6	6	5
03	5	6 5	6	6	
04	1	1	1	1	4
44	1	1	1	1	2
05	5	5	5	5 5	
06	5 5 5	5 5	6		
66	5	5	5	6	
07		4	6		
08	6	6			
09		5 5		5 5	
10	5	5	5	5	
	Curve No.				

Spool	Connections				
type	P <i>→</i> A	$P \rightarrow B$	$A\!\to\!\! T$	$B\!\to\!\! T$	$P\!\to\!\! T$
11	4			6	
22		4	6		
12		5 5		6	
13		5	6	6	
14	2	1	1	1	2
28	1	2	1	1	2
19	4	2 4 5 3	6	6	
16	5	5	4	4	
17 - 21	1	3			
18	5	5			
20	4	4	4 5	4	
15	4	4	5	5	
	Curve No.				


() aran

ORDERING CODE AD Directional valve CETOP 3/NG6 3 Ε Type of operator For other operator see next pages ** Spool see page I•10 Mounting type (table 1) * Voltage (table 2) ** Variants (table 3) * Serial No. 3 = DC voltage ("D15" coil)

3 = AC voltage ("B14" solenoid)

- AMP Junior coils (with or without diode) and coils with flying leads and coils type Deutsch, are available in 12V or 24V DC voltage only.
- The pastic type coil (BR variant) is available in 12V, 24V, 28V or 110V DC voltage only.

- Mounting type D is only for valves with detent
- In case of **mounting D** with detent a maximum supply time of 2 sec is needed (only for AC coils).

_	_	-	-		
ΙΔ	B.3	- V	ΔR	ΙΔΝ	ITS

Variant	CODE	•	PAGE
No variant	00		
Viton	V1		
Emergency control lever for directional control valves type ADC3 and AD3E	LE		I•20
Emergency button	E1		I•18
Rotary emergency button	P1		I•18
Rotary emergency button (180°)	P5		I•18
Pilot light	X1		I•19
Rectifier	R1		I•19
Preset for microswitch (E/F/G/H mounting only) (see below note 0)	M1	•	I•11- I•14
Solenoid valve without connectors	S1		
Marine version (AD.3.P)	H1	•	
Cable gland "PG 11"	C1		I•19
Emergency button+ Viton	EV		
Emergency button+ Pilot light	EX		
Viton + Pilot light	VX		
Emergency button+ Viton + Pilot light	A1		
Emergency button+ Rectifier	ER		
Viton + Rectifier	VR		
Viton + Rectifier + Emergency button	A2		
Pilot light + Rectifier	XR		I•19
Pilot light + Rectifier + Emergency button	A3		
Pilot light + Rectifier + Emergency button+ Viton	A4		
Preset for microswitch + Viton	MV	•	
5 micron clearance	Q1	•	
Spool movement speed control (only VDC) with ø 0.3 mm orifice	J3	•	I•12
Spool movement speed control (only VDC) with Ø 0.4 mm orifice	J4	•	I•12
Spool movement speed control (only VDC) with ø 0.5 mm orifice	J5	•	I•12
Spool movement speed control (only VDC) with ø 0.6 mm orifice	J6	•	I•12
AMP Junior coil - for12V or 24V DC voltage only	AJ	•	I•18
AMP Junior coil and integrated diode - for12V or 24V DC voltage only	AD		I•18
Coil with flying leads (175 mm) - for12V or 24V DC voltage only	SL		I•18
D15 plastic type coil - for12V, 24V, 28V or 110V DC voltage only	BR		
Deutsch DT04-2P coil - for12V or 24V DC voltage only	CZ		I•18
IP67 type of connector	CN		I•19
Other variants relate to a special design	3.1		
♦ = Maximum counter-pressure on T port: 8 bar			
♦ = Variant codes stamped on the plate			

File: AD3E\$\$3 E I • 9 16/2010/e

Two solenoids, spring centred "C" mounting Transient position Spool type Covering MAJBW Xiiiiii 01 + 02 WXHIW: XHHHHI 03 + 04* 44* 05 + 66 + 06 07* MITHE + 08* + 09* + 10* XXXX 22* MITTE + 11* + 12* + 13* 14* HEEKX

28*

XEEFI

ONE SOLENOID, SIDE A "E" MOUNTING						
Spool type	a/AO	Covering	Transient position			
01		+	XITITI TTTT			
02	a/ X Hw	•	XHH			
03		+				
04*	a/TIT	-				
44*		-				
05		+	XXE			
66	a/ XII w	+	XIIII			
06		+				
08*		+				
10*		+				
12*	a/ III W	+				
15	a/X	-				
16	a/ X	+	XIIII			
17	a//iii	+	[X]1.1[1]			
14*	a	-				
28*	a/	-				

DIRECTIONAL CONTROL VALVES STANDARD SPOOLS CETOP 3/NG6

Note

- (*) Spool with price increasing
- With spools 15 / 16 / 17 only mounting E / F are possible
- \bullet 16 / 19 / 20 / 21 spool not planned for AD3E variant $\ J^{\star}$
- \bullet For lever operated the spools used are different. Available spools for this kind of valve are: 01 / 02 / 03 / 04 / 05 / 06 / 66 / 07 22 / 13 / 15 / 16 / 17

0	NE SOLENOID,	SIDE B "F	" MOUNTING
Spool type	W O B D	Covering	Transient position
01	WHITE	+	
02	***	-	
03		+	
04*	WIIX	-	
44*	WHIXE	-	
05	WHILE	+	FIII
66	WT TE	+	11.11
06	WHILE	+	
08*	WHITE	+	
09*	WHILE	+	
10*	W###	+	
22*	WHILE	+	
12*	WHITE	+	
13*	WHILE	+	
07*	WHILE	+	
15	~~XIII_	-	XHII
16	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+	
17	w!/ Tb	+	
14*	~\ \	-	EIXIX
28*	WHIXE	-	

	Two solenoids "D" mounting						
Spool type	a/AB Wb	Covering	Transient position				
19*	a/ XII W	-	XHII				
20*	а/ ХТ МЬ	+	XIII				
21*	a/IIIW	+					

AD.3.E... DIRECTIONAL CONTROL VALVES SOLENOID OPERATED CETOP 3/NG6 (170)

A max. counter-pressure of 8 bar at T is permitted for the variant with a microswitch (M1).

(*) DC: Dynamic pressure allowed for 2 millions of cycles.

AC: Dynamic pressure allowed for 350.000 of cycles. For dynamic pressure of 100 bar are allowed 1 milion cycles.

Max. pressure port P/A/B	35	0 bar
Max. pressure port T (for DC) se	ee note (*) 25	0 bar
Max. pressure port T (for AC) s	see note (*) 16	0 bar
Max. flow	60	l/min
Max. excitation frequency		3 Hz
Duty cycle	100%	6 ED
Fluid viscosity	10 ÷ 500 n	nm²/s
Fluid temperature	-25°C ÷	75°C
Ambient temperature	- 25°C ÷	60°C
Max. contamination level	class 10 in accord	lance
with N	AS 1638 with filter B,	55≥75
Weight with one DC solenoid	1,6	55 Kg
Weight with two DC solenoids		2 Kg
Weight with one AC solenoid	1,3	31 Kg
Weight with two AC solenoids	1,7	'2 Kg

CALIBRATED					
DIA	PHRAGMS (**)				
ø (mm)	Code				
blind	M52.05.0023/4				
0.5	M52.05.0023/1				
0.6	M52.05.0023/6				
0.7	M52.05.0023/8				
0.8	M52.05.0023				
1.0	M52.05.0023/2				
1.2	M52.05.0023/3				
1.5	M52.05.0023/7				
2.0	M52.05.0023/10				
2.2	M52.05.0023/9				
2.5	M52.05.0023/5				

(**) For high differential pressure please contact our technical department.

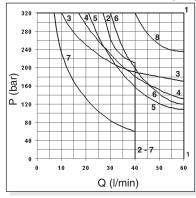
OVERALL DIMENSIONS

LIMITS OF USE (MOUNTING C-E-F)

The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 40°C. The fluid used was a mineral oil with a viscosity of $46 \text{ mm}^2/\text{s}$ at 40°C. The values in the diagram refers to tests carried out with the oil flow in two directions simultaneously T = 2 bar (e.g., from P to A and the same time B to T). In the case where valves 4/2 and 4/3 were used with the flow in one direction only, the limits of use could have variations which may even be negative. Rest times: the values are indicative and depend on following parameters: hydraulic circuit, fluid used and variations in hydraulic scales (pressure P, flow Q, temperature T).

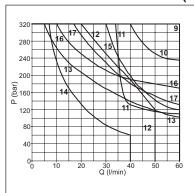
Direct current:

Energizing 30 \div 50 ms. De-energizing 10 \div 30 ms.


Alternating current:

Energizing

8 ÷ 30 ms.


De-energizing 15 ÷ 55 ms.

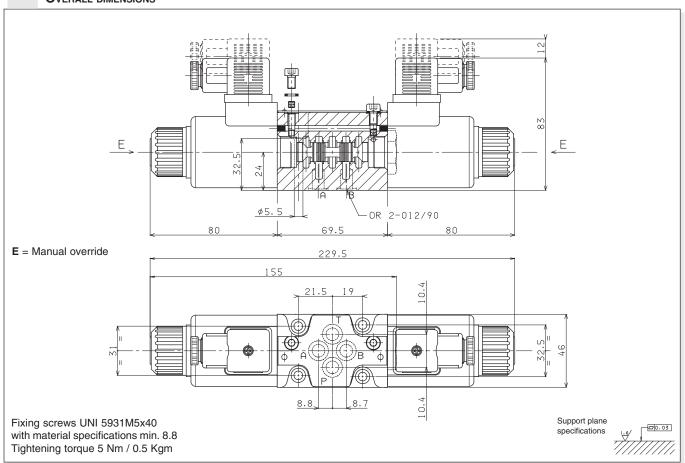
DIRECT CURRENT SOLENOIDS (DC)

Spool	Sole	noids		
type	DC	AC		
01	1	9		
02	1	9		
03	8	10		
04	6	15		
44	1	9		
05	3	16		
06 - 66	5	13		
11 - 22	4	17		
14 - 28	2	12		
15	7	14		
16	1	11		
	Curves			
Curves				

ALTERNATING CURRENT SOLENOIDS (AC)

Valves type AD3.E... variant J* with spool movement speed control

These ON-OFF type valves are used a lower spool movement speed than usual for conventional solenoid valves is required to prevent impacts which could adversely affect the smooth running of the system. The system consist of reducing the transfer section for the fluid from one solenoid to the other by means of calibrated orifices.


- This version can only be used with a direct current (DC) and also involves a reduction in the limits of use so that we suggest to always test the valve in your application
- To order AD.3.J* version valves, specify the orifices code.
- The operation is linked to a minimum counter-pressure on T line (1 bar min.)
- The switching time referred to the spool travel detected by a LVDT transducer can vary for the NG6 valve from a minimum of 100 to a maximum of 300 ms depending on 5 fundamental variables:
- 1) Diameter of the calibrated orifices (see table)
- 2) Hydraulic power for clearance referring to flow and pressure values through valve
- 3) Spool type
- 4) Oil viscosity and temperature
- 5) Counter-pressure at T line
- Possible mountings: C / E / F / G / H
- \bullet 16 / 19 / 20 / 21 spools not planned for AD3E variant J^{\star}

Max. pressure ports P/A/B	320 bar
Max. pressure port T (*)	250 bar
Max. flow	30 l/min
Max. excitation frequency	2 Hz
Duty cycle	100% ED
Fluid viscosity	10 ÷ 500 mm ² /s
Fluid temperature	-25°C ÷ 75°C
Ambient temperature	-25°C ÷ 60°C
Weight with one DC solenoid	1,65 Kg
Weight with two solenoids DC solenoids	2 Kg

 $(\mbox{\ensuremath{^{'}}})$ Pressure dynamic allowed for 2 millions of cycles.

CALIBRATED					
	ORIFICES AVAILABLE				
ø (mm)	ø (mm) M4x4 Code				
0.3	M89.10.0028	J3			
0.4	J4				
0.5	J5				
0.6	M89.10.0030	J6			

OVERALL DIMENSIONS

aron

10 ÷ 500 mm²/s

AD.3.V				
"D15" DC Coils	Ch. I page 18			
STANDARD CONNECTORS	Ch. I page 19			
L.V.D.T.	Ch. I page 21			

AD.3.V... CETOP 3/NG6

The single solenoid directional

valves type AD.3.V are used in ap-

plications where the monitoring of

the position of the spool inside the

valve is requested to manage the

machine safety cycles in according

with the accident prevention legisla-

tion. These directional valves are

equipped with an horizontal posi-

tioned inductive sensor on the op-

posite side of the solenoid, which is

capable of providing the first move-

ment of the valve when the passage

of a minimum flow is allowed. Integrated in safety systems, these

valves intercept actuator move-

ments that could be dangerous for the operators and for the machine.

WITH PROXIMITY SENSOR L.V.D.T.

Max. operating pressure ports P/A/B 350 bar Max. operating pressure port T dynamic (see note*) 250 bar

Max. flow 60 l/min Max. excitation frequency 3 Hz Duty cycle 100% ED

Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Type of protection

(in relation to connector used) **IP 66** Weight 1,7 Kg

(*) Pressure dynamic allowed for 2 millions of cycles.

• Possible mountings: E / F / H

Fluid viscosity

• The valve is supplied with DC solenoid only

	PRESSURE DROPS			
	1 2			
20	1 2			
18				
16	4			
14 -	5			
12				
∆p (bar) 10 - 8 -	6			
å ₽				
6				
4 -				
2				
0 -				
0	10 20 30 40 50 60			
Q (I/min)				

Spool type	Connections				
type	P-A	P→B	$A \rightarrow T$	$B \rightarrow T$	P→T
01	5	5	5	5	
02	6	6	6	6	5
06	5	5	6	5	
16	5	5	4	4	
17	1	3			
66 32	5	5	5 2	6	
32	1	1	2	2	
	Curves No.				

The diagram at side shows the Δp curves for spool in normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C.

ORDERING CODE

ΑD

Directional control valve

CETOP 3/NG6

٧

3

Directional valve with single solenoid and L.V.D.T. proximity sensor

Spool and mounting (table 1)

Voltage (table 2)

**

Variants (table 3)

Serial No.

- registered mark for industrial environment with reference to the electromagnetic compatibility. European norms:
- EN50082-2 general safety norm industrial environment
- EN 50081-1 emission general norm residential environment

TAB.2 - VOLTAGE

D15 Coi∟ (30W)				
L	12V			
M	24V 115Vac/50Hz			
٧	28V* 120Vac/60Hz			
N	48V* with rectifier			
Z	102V*◀ 230Vac/50Hz			
Р	110V* 240Vac/60Hz			
R	205V* with rectifier			
W Without DC coils and connectors				
Voltage codes are not stamped on the plate, their are readable on the coils.				

Special voltage

Ch. 27 ø5.5 255.5 E = Manual override Fixing screws UNI 5931 M5x30 Support plane with material specifications min. 8.8 specifications Tightening torque 5 Nm / 0.5 Kgm

Tab1 - Standard spools for AD3V

Possible mounting: E / F / H					
Spool type	MAOBW BAOBW	Covering	Transient position		
01E		+			
01F	WHITE	+			
02E		-	MHH		
06H*		+			
16E		+			
17F	WIII	+			
66F	WIII)	+			
32E		+			
(*) Spool with price increasing					

TAB.3 - VARIANTS

I AD.J - V ARIANTS	
No variant	00
(connectors as in the drawing)	
Viton	V1
Emergency button	E1
Pilot light	X1
Rectifier	R1
Flow diversion without connector (coil)	S1
Without proximity connector LVDT	S3
Without coils and proximity connector	S4
Cable gland "PG 11"	C1
Viton + Pilot light	VX
AMP Junior coil	AJ
AMP Junior coil and integrated diode	AD
Coil with flying leads (175mm)	SL
Deutsch DT04-2P Coil type	CZ
Other variants relate to a special design	

aron

AD.3.L...

STANDARD SPOOLS CH. I PAGE 10

AD.3.L... LEVER OPERATED CETOP 3/NG6

Max. pressure ports P/A/B Max. pressure port T Max. flow Lever angle Fluid viscosity Fluid temperature Ambient temperature Max. contamination level

Weight M1 variant

320 bar 160 bar 60 l/min $2 \times 17^{\circ}$ $10 \div 500 \text{ mm}^2/\text{s}$ $-25^{\circ}\text{C} \div 75^{\circ}\text{C}$ $-25^{\circ}\text{C} \div 60^{\circ}\text{C}$ s 10 in accordance with 5 1638 with filter $\beta_{\text{ae}} \ge 75$

class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ 1,2 Kg

1,8 Kg

ORDERING CODE

AD

Directional valve

3

CETOP 3/NG6

L

Lever operation

**

Spool type (see table 1) Spool symbol see page I•10

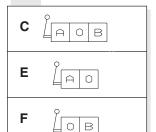
(*)

Mounting type (see table 2)

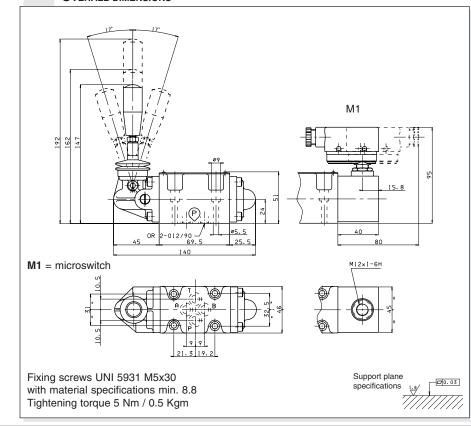
*

Z = Valve with leverX = Valve without lever

4


Variants (see table 3)

Serial No.


TAB.1 Spools type

- For these valves spools are different from ones used on the other directional valves
- Available spools: 01/02/03/04/05/06/66 07/22/13/15/16/17

TAB.2 MOUNTING TYPE

OVERALL DIMENSIONS

TABLE 3 - VARIANTS TABLE

171222 0 17111111111111111	
VARIANTS	C ode(♦)
No variant	00
Viton	V1
Preset for microswitch Available on request NATIONAL AM1107 type microswitch	M1 (•)
Preset for microswitch + Viton	MV(♦)
With detent (*) (mechanical connection) (Springs are different from those for standard versions)	D1(♦)
Preset for microswitch + Detent (*)	MD(♦)
Lever length 162 mm	L1
Lever length 192 mm	L2
◆ Variant codes stamped on the	plate

(*) max. 150.000 cycles.

OTHER OPERATOR			
STANDARD SPOOLS	Ch. I page 10		
AD.3.P	Ch. I page 16		
AD.3.O	Ch. I page 16		
AD.3.M	Ch. I page 17		
AD.3.D	Ch. I page 17		

DIRECTIONAL CONTROL VALVES OTHER OPERATOR CETOP 3/NG6

INTRODUCTION

The ARON directional control valves NG6 are designed for subplate mounting with an interface in accordance with with UNI ISO 4401 - 03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03), and can be used in all fields on account of their high flow rate and pressure capacities combined with compact overall dimensions.

The use of solenoids with wet armatures allows a very practical, safe construction completely dispensing with dynamic seals; the solenoid tube is screwed directly onto the valve chest whilst the coil is kept in position by means of a lock nut.

The special, precise construction of the ports and the improvement of the spools enables relatively high flow rates to be accommodated with a minimal pressure drop (Δ p).

The centre position is obtained by means of calibrated length springs which reposition the spool in the centre or end of travel position once the action of the impulse is over.

The valves are designed for use with DIN 51524 standard hydraulic mineral oils and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638, $\beta_{sc} \ge 75$.

ORDERING CODE

AD

3

*

Directional valve

CETOP 3/NG06

Type of operator

P = Pneumatic

O = Oleodynamic

M = Mechanically

D = Direct mechanically

(For other operator see

past pages)

**

2

Spool (see page I•10)

* Mounting type (tab.1)

z No voltage

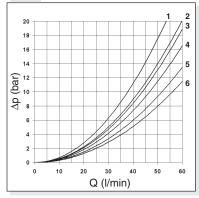
** Variants:

00 = no variant

V1 = Viton

H1 = Marine version (for AD3P only)

DI(*) = Internal draining (for AD3O only)


Serial No.

TAB.1 MOUNTING C a MAOB ME D A B K A O W Ε F M O B SPECIALS (WITH PRICE INCREASING) MAIOH G a/0 B W Н ı a/AOTO L а/ 0 В _ы M a/AB Th

• In case of **mounting D** with detent a maximum supply time of 2 sec is needed (only for AC coils).

(*) The DI variant is recommended in the environments characterised by the presence of dust or any type of contamination.

PRESSURE DROPS


Spool	Connections				
type	P- A	P→B	$A \rightarrow T$	B→T	P→T
01	5	5	5	5	
02	6	6	6	6	5
03	5	5	6	6	
04	1	1	2	2	4
05	5	5	5	5	
06	5 5	5	6	5	
66	5	5	5	6	
07		4	6		
08	6	6			
09		5		5	
10	5	5	5	5	
	Curve No.				

Spool	Connections				
type	P→A	Р⊸В	A →T	B→T	P→T
11 22 12 13 14 28 15 - 19 16 17 - 21	2 1 4 5	4 5 5 1 2 4 5 3	6 6 1 1 6 4	6 6 6 1 1 6 4	2 2
18 20	5 4	5 4	4	4	
	Curve No.				

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

 $\Delta p1 = \Delta p \times (Q1/Q)^2$

where Δp will be the value for the losses for a specific flow rate Q which can be obtained from the diagram, $\Delta p1$ will be the value of the losses for the flow rate Q1 that is used.

 Max. pressure ports P/A/B
 320 bar

 Max. pressure port T
 160 bar

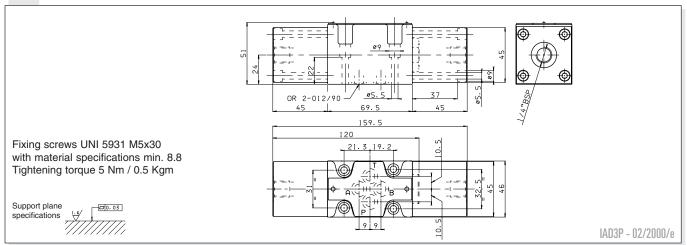
 Max. flow
 60 l/min

 Minimum operating pressure
 2 + [0.027 x (pt*)] bar - see note

Minimum operating pressure $2 + [0.027 \times (pt^*)]$ bar - see note Maximum operating pressure 20 bar

Fluid viscosity $10 \div 500 \text{ mm}^2\text{/s}$ Fluid temperature $-25^{\circ}\text{C} \div 75^{\circ}\text{C}$ Ambient temperature $-25^{\circ}\text{C} \div 60^{\circ}\text{C}$

 $\begin{array}{ccc} & \text{with filter } \beta_{2s}{\geq}75 \\ \text{Weight single pilot} & 1,2 \text{ Kg} \\ \text{Weight twin pilot} & 1,8 \text{ Kg} \\ \end{array}$


class 10 in accordance with NAS 1638

Possible mountings: C/D/E/F/G/H/I L/M

Ordering code see page before

 (pt^*) = pressure at port T

OVERALL DIMENSIONS

Max. contamination level

AD.3.O... OLEODYNAMIC OPERATION TYPE VALVES CETOP 3/NG6

• Possible mountings:

C/D/E/F/G/H/I L/M

Ordering code see

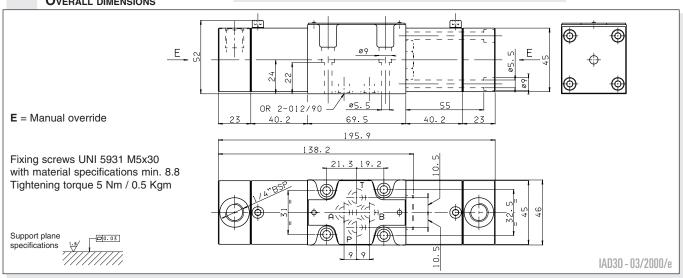
 (pt^*) = pressure at port T

page before

Max. pressure ports P/A/B 320 bar Max. pressure port T 160 bar Max. flow 60 l/min Minimum operating pressure $15 + [0.1 \times (pt^*)]$ bar - see note

Maximum operating pressure 250 bar Fluid viscosity 10 \div 500 mm²/s Fluid temperature 0°C \div 75°C Ambient temperature -25°C \div 60°C

Max. contamination level class 10 in accordance with NAS 1638 with filter $\theta_{\text{se}} \ge 75$


Weight single pilot 1,5 Kg
Weight twin pilot 2,3 Kg

The DI variant is recommended in the environments characterised by the presence of dust or any type of contamination.

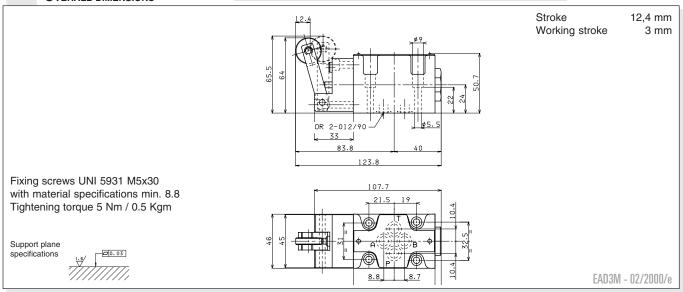
Further technical specifications (for DI variant only)

Minimum operating pressure [10 + (pt*)] bar - see note
Maximum operating pressure 250 bar
Max. piloting leakage 1 l/min

OVERALL DIMENSIONS

aran

Max. pressure ports P/A/B 320 bar Max. pressure port T 160 bar Max. flow 60 l/min 2,5 Kg Minimum operating force - see note (*) Maximum operating force - see note (**) 13 Kg Cam angle 27° Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ -25°C ÷ 75°C


Fluid temperature Ambient temperature Max. contamination level

-25°C ÷ 60°C class 10 in accordance with NAS 1638 with filter $B_{25} \ge 75$ 1 Kg

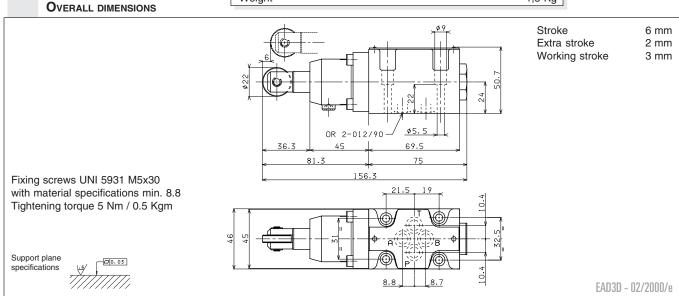
•Possible mountings: E/F/G/H

- · Ordering code see page before
- Note:
- (*) In the absence of counter-pressure at port T
- (**) with a pressure of 160 bar at port T

AD.3.D... DIRECT MECHANICALLY OPERATED TYPE VALVES CETOP 3/NG6

Max. pressure ports P/A/B Max. pressure port T Max. flow Operating force - see note (*) Fluid viscosity

Fluid temperature Ambient temperature Max. contamination level


Weight

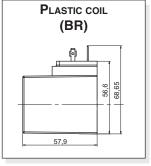
320 bar 20 bar 60 l/min 6 Kg $10 \div 500 \text{ mm}^2/\text{s}$ 0°C ÷ 75°C -25°C ÷ 60°C class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$

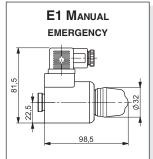
1,5 Kg

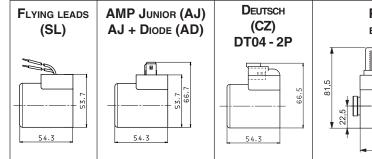
Possible mountings: E/F/G/H

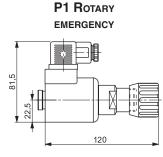
- · Ordering code see page before
- Note:
- (*) In absence of counter-pressure at port T

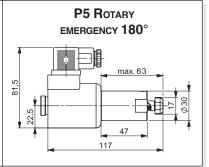
"D15" DC COILS FOR CETOP 3

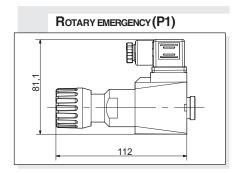

() aran


Type of protection (in relation to the connector used) IP 66 Number of cycles 18.000/h Supply tolerance $\pm 10\%$ Ambient temperature -54°C $\div 60$ °C Duty cycle 100% ED Insulation class wire H Weight 0,354 Kg


 AMP Junior coils (with or without diode) and coils with flying leads and coils type Deutsch, are available in 12V or 24V DC voltage only.


• The pastic type coil (BR variant) is available in 12V, 24V, 28V or 110V DC voltage only.


Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	110°C	30	4.8
24V	110°C	30	18.8
28V*	110°C	30	25.6
48V*	110°C	30	75.2
102V*	110°C	30	340
110V*	110°C	30	387
205V*	110°C	30	1375
(*) Specia	AL VOLTAGES		ETD15 - 04/2001/e



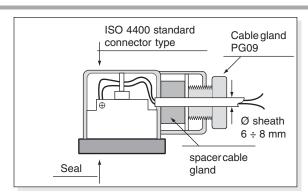
"B14" AC SOLENOIDS FOR CETOP 3

MANUAL EMERGENCY (E1)

Type of protection (in relation to the connector used)	IP 65
Number of cycles	18.000/h
Supply tolerance	+10% / -10%
Ambient temperature	-30°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	Н
Weight	0,436 Kg

Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RESISTANCE AT 20°C (OHM) ±10%
24V/50Hz - 24V/60Hz	100°C - 96°C	1.7
48V/50Hz - 48V/60Hz	_	_
115V/50Hz - 120V/60Hz	133°C - 101C°	32.5
230V/50Hz - 240V/60Hz	120°C - 103C°	134

CONNECTORS DIRECTIONAL CONTROL VALVES IN ACCORDANCE WITH DIN 43650/ISO4400


() aron

			O 112 C 2 2
CONNECTOR	Voltage *Special voltage	ORDERING CODE	Code (variants)
STANDARD (IP65)			
Grey (side A)		V86.05.0004	No variant
Black (side B)		V86.05.0002	
TYPE WITH			
CABLE GLAND PG 11			C1
Grey (side A)		V86.05.0008	
Black (side B)		V86.05.0006	
Lens cover with	PILOT LIGHT		X1
	12 VAC/VDC	V86.10.0018	
(sides A and B)	24 VAC/VDC	V86.10.0012	
,	115 VAC/VDC	V86.10.0020	
	230 VAC/VDC	V86.10.0022	
WITH RECTIFIER			R1
Grey (side A)		V86.20.0004	
Black (side B)		V86.20.0002	
` Ín	let voltage: 12÷220VAC		
Red	tified voltage: 9÷200VD	C	
Lens cover with	l		XR
PILOT LIGHT AND REC	TIFIER		
	12 VAC	V86.25.0018	
	24 VAC	V86.25.0019	
(sides A and B)	48 VAC*	V86.25.0020	
•	115 VAC*	V86.25.0021	
	230 VAC*	V86.25.0022	
TYPE OF PROTECTIO	и IP67		CN
Grey (side A)		V86.28.0002	
Black (side B)		V86.28.0001	

- Screw tightening torque: 60Ncm.
- Note: the screw has to enter less than 4 mm into the threaded section of the coil.
- It is suggest the use of the CN connector type (IP67) with the variant BR coil, which made in plastic material.

ELECTRICAL FEATURES OF CONNECTORS

Seal Screw thread key 19 mm. Ø cable 4 ÷ 7 mm

CONNECTORS IP 65 (STANDARD)

AC rated voltage	Max. 250 V
DC rated voltage	Max. 300 V
Pin conctat rated flow	10A
Pin conctat max. flow	16A
Max. section cable	1,5 mm ²
Ø Cable gland PG09 - M16x1,5	6 ÷ 8 mm
Type of protection	IP65 EN60529
Insulation class	VDE 0110-1/89
Operating temperature	-40°C ÷ 90 C°

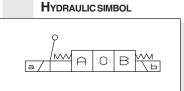
CONNECTORS IP67 (CN VARIANT)

Max. 250 V
Max. 300 V
10A
16A
1,5 mm ²
4 ÷ 7 mm
IP67 EN60529
VDE 0110-1/89
-20°C ÷ 80 C°

The degrees of protection indicate is guaranteed only if the connectors were properly mounted with his original seals.

"LE" VARIANT - EMERGENCY CONTROL LEVER FOR DIRECTIONAL CONTROL VALVES (ADC/AD.3.E)

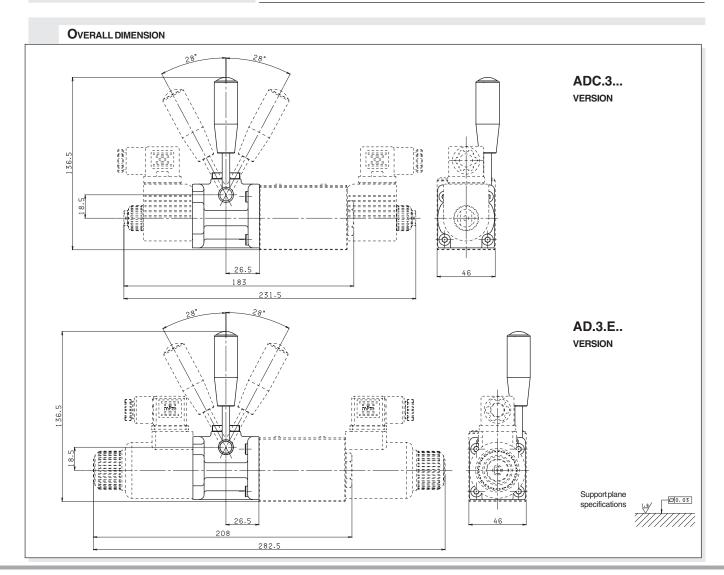
The emergency control lever for solenoid valves by Aron, represents a develop in terms of safety and flexibility among applied hydraulic components.


Thanks to his flexibility, the component was designed to be inserted between the valve body and the spool, providing total interchangeability between the different types of solenoid body valves manufactured by Aron. It is compatible with the standard CETOP 3 and stackable valves with threaded connections –G3/8" or 9/16-18UNF (SAE 6). The component is available for both directional control and proportional valves (for the last type of control please consult our Technical Department)

As an emergency lever applied to solenoid valves, the control can be used as a safety device in conformity with the industry standards, also playing an useful role in the event of power cuts. The control can be used in agricultural and mobile fields; the manual action can be used to carry out periodic maintenance work on mobile components of the vehicle, in perfectly safe working conditions.

Max operating pressure port T:
dynamic 160 bar
static 210 bar

Max operating pressure port P
for series connection configuration 160 bar

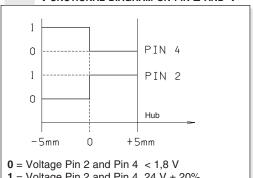

• MOUNTING TYPE: C / F / H

Spools TYPE: 01/02/03*/04/16/17/66

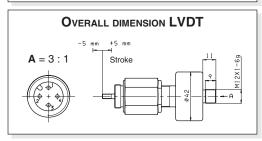
 The spool 03 is allowed only on AD3E. Not permitted with ADC3

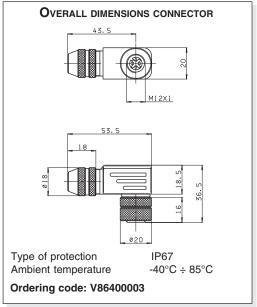
		MOUNTING COMPATIBILITY		
Cod	E VALVE	DESCRIPTION	Coil	VOLTAGE
	ADC.3	Directional control valve	A09	27 W
	AD.3.E	Directional control valve	D15	30 W

PROXIMITY SENSOR TYPE L.V.D.T.



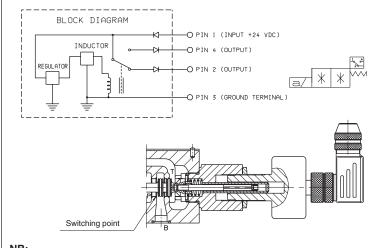
Supply voltage 24 V ± 20% Polarity reversal protection max 300 V Switching point hysteresis ≤0,06 mm Reproducibility ± 0,02 mm Max. output current ≤250 mA Protection against short circuit yes -25°C ÷ 85°C Operating temperature Connection type connector Protection according to DIN IP65 315 bar Max. pressure


CE certificate according to 89/336/EEC EMC is provided. A screened cable is needed.


The LVDT position transducers allow to check exactly the very instant when the passage of a minimum flow is allowed.

FUNCTIONAL DIAGRAM ON PIN 2 AND 4

 $1 = Voltage Pin 2 and Pin 4 24 V \pm 20\%$



ELECTRICAL CONNECTIONS LVDT

With this connection, on the Pin 4 there is no output signal when oil is (\mathbf{B}) crossing the valve (from $P \rightarrow B$).

connecting the output to Pin 4 or Pin 2 the type of contact, normally closed or open, can be chosen.

AD.3.XD...

AD.3.XD / AD.3.XS			
ATEX DIRECTIVE	Ch. I Page 22		
ATEX CLASSIFICATION	Ch. I Page 23		
Series AD.3.X*	Ch. I Page 24		
TECHNICAL SPECIFICATIONS	Ch. I Page 24		
ORDERING CODE	Ch. I Page 24		
Tab.1 Assembly	Ch. I Page 25		
Tab. 2 Voltages	Ch. I Page 25		
Tab.3 Spool	Ch. I Page 25		
LIMITS OF USE	Ch. I Page 25		
IDENTIFICATION NAMEPLATE	Ch. I Page 26		
SAFETY INSTRUCTIONS	Ch. I Page 26		
OVERALL DIMENSIONS	Ch. I Page 27		

AD.3.X*... DIRECTIONAL CONTROLE CETOP 3 IN ACCORDANCE WITH 94/9/CE ATEX DIRECTIVE

94/9/CEATEX EC DIRECTIVE (EXPLOSIVE ATMOSPHERE)

INTRODUCTION

Since 30/06/2003 products introduced into the market (or started-up) inside the EU, destined to be used in potentially explosive environments, must be in compliance with the 94/9/EC Directive through special marking. The directive regarding ATEX products 94/9/EC is therefore the regulation instrument that the European Union uses to obtain legislative harmonisation between the States and guarantee free circulation of goods inside the European Community itself.

The directive affirms that to eliminate obstacles from commerce it is necessary to guarantee a high level of protection and, with this aim, define the essential requirements on the subject of safety and health. The dispositions base themselves on the principle of the "new approach" (NA), for which the essential safety requirements of products must be established depending on the risk evaluation concurrent at the time of their use.

The 94/9/EC Directive is applied to the manufacture specifications of all those products (electrical and not) destined to be used in potentially explosive environments caused, by the dangers deriving from the presence of dust or gas, with the scope of reducing the risk of use that could be derived.

The term **product** refers to appliances, protection systems, devices, components and relative combinations, as defined in 94/9/EC Directive.

The term **appliances** intends machines, materials, fixed or mobile devices, control elements, instruments detection and prevention systems. Alone or combined these are destined for production, transport, deposit, measurement, adjustment and conversion of energy, and to the transformation of material and which, by way of the powerful triggering sources, risk causing an explosion. As a consequence, even intrinsically safe appliances re-enter within the field of application of the directive.

Ther combination of two or more appliance parts, as well as any other components, makes up a whole unit that can be considered a product and therefore re-enters within the field of application of the 94/9/EC Directive. If the whole unit requires adequate **installation** (therefore it is not immediately ready for use) the attached instructions should guarantee maintenance of compliance to the 94/9/EC Directive on installation, without further evaluations of conformity. The installer must follow the instructions correctly.

When a combination of appliances leads to a **plant** this may not re-enter within the field of application of the directive. Each part must be certified and in compliance with the directive (as well as being subject to the relative evaluation of conformity, EC marking, etc.).

The plant manufacturer must therefore presume the conformity of the various components (each supplied with conformity certificate released by the respective manufacturer) and limit their evaluation only to any additional risks that become important in the final combination. Nevertheless, if the plant manufacturer inserts parts without EC marking or components not supplied with the certificate it will be obligatory to carry out further conformity evaluation of the whole unit.

The 94/9/EC Directive envisions **obligations of the person** who introduces products into the market and/or starts them up, whether they are manufacturer's, his agent's, importer's or any other responsible person. The dispositions and obligations envisioned by the directive for **introduction into the market** have been applied, since 30 June 2003, to every individual product, independently from the date and place of manufacture. It is the manufacturers responsibility to guarantee conformity of all products, where these re-enter within the field of application of the directive.

The directive does not govern the use of the appliances; rather it establishes that the products can only be used if in compliance with safety requirements at the time of their introduction into the market or of their start-up. "Start-up" means the first use of the products subject of the 94/9/EC Directive on EU territory by a final user. Nevertheless, a product that is immediately ready for use and does not need assembly or installation, and whose distribution conditions (deposit, transport, etc.) are not important for performance, is considered started-up at the time of introduction into the market.

Among the main potential causes/sources of triggering an explosion, such as sparks, flames, electric arcs etc.., **maximum surface temperature** also plays an important role. The dispositions of the directive establish evaluation criteria for the maximum temperature admissible depending on the type of explosive atmosphere in which the appliance must operate.

For environments characterised by the presence of **gas-air**, some temperature values are supplied to which the appliances must refer. They are indicated by the letter T followed by a number. The criterion to apply is that for which the temperature of the appliance must never exceed 80% of the value indicated for its own category.

For environments characterised by the presence of **dust-air**, to prevent setting on fire of the airborne dust, the surface temperature of the appliances must be decidedly lower than the predictable temperature of catching fire of the air+dust mixture. Therefore, during planning the maximum working surface temperature must be declared directly (in degrees centigrade).

Increases in temperature deriving from an accumulation of heat and chemical reactions must also be taken into consideration. The thickness of the deposited layer of dust must also be considered and, if necessary, limit the temperature, to prevent an accumulation of heat.

1

AD.3.X*... DIRECTIONAL CONTROLE CETOP 3 IN ACCORDANCE WITH 94/9/CE ATEX DIRECTIVE

CLASSIFICATIONS OF AREA - MIX - GROUP AND RELATIVE CATEGORY - ACCORDING TO ATEX DIRECTIVES

The 94/9/EC Directive is a "new approach" directive based on risk analysis. Its objective is to minimise the risks deriving from the use of some products indoors or in relation to a potentially explosive atmosphere. The probability of an explosive atmosphere manifesting must be considered not only as "one-off" or from a static point of view: all operative conditions that can derive from the transformation process must be taken into consideration.

- An **explosive atmosphere** for the 94/9/EC Directive is made up from a mixture of inflammable substances (as gas, vapours, mists and dust), with air, in determined atmospheric conditions in which, after triggering, the combustion propagates together with the unburned mixture.
- An atmosphere susceptible to transforming into an explosive atmosphere because of local and/or operative conditions is defined potentially explosive atmosphere.

Explosive atmospheres are not only formed in the presence of obviously dangerous substances such as fuel, solvents etc., but also in the presence of apparently harmless products such as wood dust, metal dusts, flour, grain, sugar etc. Therefore it can concern not only industries in the chemical or oil industry sectors, but also industries in the foodstuffs, textile, manufacturing etc.. It is important to consider that to re-enter within the 94/9/EC Directive a product must be applied in presence of one or more of the characteristic elements listed above: presence of inflammable substances and air, in atmospheric conditions that favour the propagation of combustion. The directive does not define the atmospheric conditions itself. The relative norms indicate a temperature range, but this does not exclude that the products may be planned and evaluated specifically to occasionally function outside of this range, introducing the opportune construction transformations.

To define a **conformity evaluation procedure** adequate for the directive, the Manufacturer must, on the basis of the declared use, establish the products functioning conditions (this means to say, envision the type of working area, the type of explosive mixture with which it will come into contact and the level of probability that an explosive atmosphere verifies itself); successively he must establish to which Group the product belongs and individualise the category inside the Group.

With the Atex 99/92/EC Directive (For the safety of workers) the working conditions in which products in compliance with Atex 99/4/EC Directive will function are indicated here. These are expressed in "Areas" and defined according to the level of probability that a potentially explosive atmosphere is verified, respectively for every type of atmosphere (gas-air mix or dust-air mix).

Area 0 and 20 Places in which an explosive atmosphere is constantly present or present for long periods or frequently.

Area 1 and 21 Places in which an explosive atmosphere is probable. It is verified in normal functioning and exercise conditions.

Area 2 and 22 Places in which an explosive atmosphere has low probability of being verified or, if it occurs only lasts for a brief period of time.

GAS-AIR-TYPE EXPLOSIVE MIXTURE (G)

The products destined to work in environments characterised by this type of explosive atmosphere will be respectively indicated for Area **0**, **1 or 2** depending on the Group and category of origin (see below) and are marked with the letter G.

DUST-AIR-TYPE EXPLOSIVE MIXTURE (D)

The products destined to work in environments characterised by this type of explosive atmosphere will be respectively indicated for Area 20, 21 or 22 depending on the Group and category of origin (see below) and are marked with the letter D.

GROUP I

Includes the appliances destined to be used in underground jobs in the mines and their surface plants, exposed to the risk of the release of firedamp and/or combustible dust. The subdivision into categories depends on the fact if the power supply must be interrupted or not if an explosive atmosphere manifests due to a mixture of air and gas, vapours mists (D) or a mixture of air and dust (G).

Category M1 Very high protection level. These products must be able to remain operative, for safety reasons, in the presence of an explosive atmosphere and present specific performances or protection configurations for breakdown in case of explosion.

Category M2 High protection level. The power supply to these products must be interrupted in the presence of an explosive atmosphere. Protection means must be incorporated to guarantee the level of protection during normal functioning and also in oppressive working conditions or resulting from great stressi.

GROUP II

Includes appliances destined to be used in different environments (from the mines) in which there is a probability that an explosive atmosphere manifests itself. Their subdivision into categories depends on two factors: the place, where the product will be used and if the probability that a potentially explosive atmosphere, owing to the mixture of air and gas, vapours, mists (D) and the mixture of air and dust (G), comes about in a constant or occasional manner and if it does occur, does this possibility remain for long or brief period of time.

Category 1 Very high protection level. These products must be planned to function in compliance with operative parameters established by the Manufacturer in environments in which there is a high probability that explosive atmospheres are always detected or manifest often or for long periods of time. They must present specific performances or protection configurations for breakdown in case of explosion.

Category 2 High protection level. These products must be planned to function in compliance with operative parameters established by the Manufacturer in environments in which there is a high probability that explosive atmospheres can manifest. Protection against explosions relative to this category must function in a way to guarantee the required safety level even in the presence of functioning defects of the appliances or in dangerous operative conditions, which frequently must be taken into consideration.

Category 3 Normal protection level. These products must be planned to function in compliance with operative parameters established by the Manufacturer in environments in which there is a slight probability that explosive atmospheres can manifest, and however only rarely or for a brief period of time. This type of product belonging to the category in question must guarantee the safety level required in normal functioning conditions.

AD.3.XD...

AD.3.XD / AD.3.XS				
Ch. I Page 22				
Ch. I Page 23				
Ch. I Page 24				
Ch. I Page 24				
Ch. I Page 24				
Ch. I Page 25				
Ch. I Page 25				
Ch. I Page 25				
Ch. I Page 25				
Ch. I Page 26				
Ch. I Page 26				
Ch. I Page 27				

AD.3.X*... DIRECTIONAL CONTROLE CETOP 3 IN ACCORDANCE WITH 94/9/CE ATEX DIRECTIVE

SOLENOID VALVES FOR USE IN WORKPLACES WHERE EXPLOSIVE ATMOSPHERES MAY OCCUR DUE TO THE PRESENCE OF GAS, VAPOUR OR MIST AND DUST.

AD3.X* solenoid valves are classified in:

Group II appliances (to be used in workplaces, apart from mines, where there is the probability of explosive atmospheres);

category 2 (high protection level), for use in workplaces where it is probable that an explosive atmosphere may form in normal working conditions and classified by the presence of explosive mixtures:

- Atmosphere gas-dust type (letter GD) for zones 1 and 21, AD3XD solenoid valves.
- Atmosphere gas type (letter G) for zones 1 and 2, AD3XD solenoid valves.

These valves are therefore designed especially and manufactured in compliance with the ATEX 94/9/EC Directive and according to European regulations EN 1127-1, EN 13463-1 and EN 13463-5.

Belonging to the "NG06 direction control" of Aron range, these valves are prepared for plate-mounting with attachment surface in compliance with UNI ISO 4401 - 03 - 02 - 0 - 94 (former CETOP R 35 H 4.2-4-03). They are activated electrically and the centre position is ensured by springs with gauged lengths, which once the pulse or command ceases, re-position the spool in the centre or at the end of travel position.

The coils used for these valves are subject to separate conformity certification, according to the ATEX Directive (EC-type). For further specifications, please consult the documents that are always supplied with the valve.

Before marking and marketing the valves of the AD3XD / AD3XS series, undergo tests and inspections according to the in-house Manufacturing System and to the Certified Company Quality System in compliance with ISO 9001:2008. All of the AD3XD and AD3XS valve series undergo 100% functional testing. These tests and inspections guarantee that the products sold comply with all the information reported in the Technical Specifications File registered and declared by marking with AD3X/ATEX/10.

ORDERING CODE

AD	П	Directional	Control	Valve

3 CETOP 3/NG06

X*

**

Solenoid valves built pursuant to ATEX Directive-94/9/EC

D = With coils in explosion-proof version (Ex d)

S = With coils in increased safety version (Ex me)

Spools

01/02/03/04/16 (tab.3)

For further hydraulic diagrams, contact Aron Customer Service

* Assembly C/E/F/G/H (tab.1)

For further assembly instructions, contact Aron Customer Service

*) Voltage (tab.2)

**) Variants

00 = None

V1 = Viton (just for AD3XD)

LE = Emergency lever (just for AD3XD)

2 Serial number

TECHNICAL SPECIFICATIONS

Description	AD3XD	AD3XS
Valve marking	(€ ⟨ E x⟩ 2 GD cT5	(€ (€x) II 2 G cT4
Max. pressure on lines P/A/B Max. pressure on line T (dynam	320 bar	320 bar 70 bar
Max. flow rate	60 l/min 3 Hz	60 l/min 3 Hz
Max.excitation frequency Duty cycle	100%ED	100%ED
Hydraulic fluids Fluid viscosity	mineral oils DIN 51524 10 ÷ 500 mm²/s	mineral oils DIN 51524 10 ÷ 500 mm²/s
Fluid temperature	-20°C ÷ +40°C -20°C ÷ +40°C	-30°C ÷ +60°C -30°C ÷ +60°C
Ambient temperature Max.contamination level	class 10 according to	class 10 according to
Weight (one solenoid)	AS 1638 with filter $B_{25} \ge 75$ 2,37 kg	NAS 1638 with filter $\beta_{25} \ge 75$ 2,10 kg
Weight (two solenoids)	3,82 kg	3,40 kg
Coil rated power Degree of protection	11-13 W IP 67	IP 66
Power supply tolerance	±10%	-10% ÷ 0%
Power supply cable	standard length 3m with cable gland	Cable gland according to Atex for cable with outside Ø 7÷ 12 mm
Coil marking:	consult	documents supplied with coil

AD.3.X*... DIRECTIONAL CONTROLE CETOP 3 IN ACCORDANCE WITH 94/9/CE ATEX DIRECTIVE

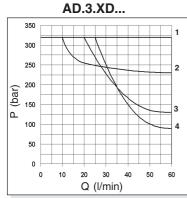
TAR 1 ASSEMBLY

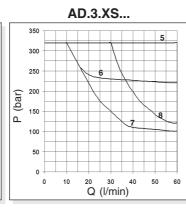
	TAB. I ASSEMBLY				
	STANDARD				
С	aWAOB Wb	Two solenoids centred			
Е	a/AOW	One solenoid (side A)			
F	W O B V	One solenoid (side B)			
	Specia	ls (with increased price)			
G	MA O VP				
Н	a/OBW				

TAB.3 SPOOL

	Two solenoids - Assembly C					
Type of spool	MA OB W	Cover	Transit position			
01		+				
02		-				
03		+				
04*		-				

One solenoid - Assembly E						
Type of spool	a/A o	Cover	Transit position			
01		+				
02	a/XII	-				
03	a/XII	+ -				
04*	a/	-				
16	a/ X \	+	[XIII]			

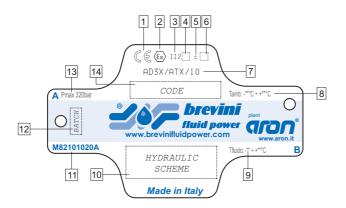

One solenoid - Assembly F						
Type of spool	MOB P	Cover	Transit position			
01	WHITE	+				
02	w#1176	-	HHI			
03	w#III_	+				
04*	white	-				
16	wXII-	+	XIII			


(*) spool with increased price

TAB. 2 VOLTAGES

I AD. Z V	OLIAGES	
AC	for	for
Voltage	AD3XD	AD3XS
Α	24/50Hz	24/50Hz
B*	/	48/50Hz
С	110V/50Hz	/
J	/	115V/50Hz
D	220V/50Hz	/
1	230V/50Hz	230V/50Hz
DC	for	for
Voltage	AD3XD	AD3XS
L	12V	12V
M	24V	24V
P*	110V	/
N	48V	/
(*) special voltage	The tension symbon	ol is always printed on the

LIMITS OF USE (MOUNTING C-E-F)



Spool	Curva
type	AD3XD
01	2
	_
02	1
03	3
04	4
16	1
	AD3XS
01	AD3XS
01 02	
	6
02	6 5
02 03	6 5 7

The tests have been carried out with solenoids at operating temperature with a voltage 10% less than rated voltage with a fluid temperature of 40°C. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40°C. The values in the diagram refers to tests carried out with the oil flow in two direction simultaneously (e.g.. from P to A and in the same time B to T). In cases where valves 4/2 e 4/3 were used with the flow in one direction only, the limits of use could have variations which may even be negative.

IDENTIFICATION NAMEPLATE AND MARKING

All the solenoid valves are supplied with identification nameplate Declaration of conformity subject to Directive 94/9/EC.

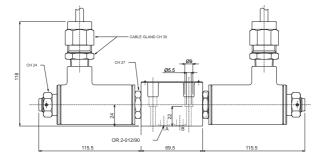
The identification nameplate bears the main technical specifications related to the functional and constructional characteristics of the valve and must therefore be kept intact and visible.

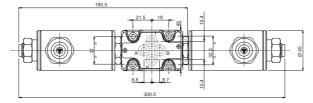
1 €	Conformity to European Directive
2 (Ex)	Conformity to
	ATEX Directive 94/9/EC
3 II 2	Group II (surface places) Category 2 (high protection)
4 G*	Explosive atmosphere: GD: presence of gas, vapour or mist and combustible dust (series AD3XD) G: presence of gas, vapour or mist (series AD3XS)
5 c	Constructional safety
6 T*	Temperature class: T5 (<100 °C) series AD3XD T4 (<135 °C) series AD3XS
7 AD3X/ATX/10	Reference to Technical File registered c/o Notified Body

8 T amb	Working ambient temperature: - 20°C ÷ + 40°C series AD3XD - 30°C ÷ + 60°C series AD3XS
9 T fluid	Working fluid temperature: - 20°C ÷ + 40°C series AD3XD - 30°C ÷ + 60°C series AD3XS
10 HYDRAULIC SCHEME	Type of hydraulic control performed by the valve
11 M82101020A	Nameplate code
12 BATCH	Reference number of technical order (batch)
13 Pmax 320 bar	Max.working pressure
14 CODE	Complete reference number of valve ordering code

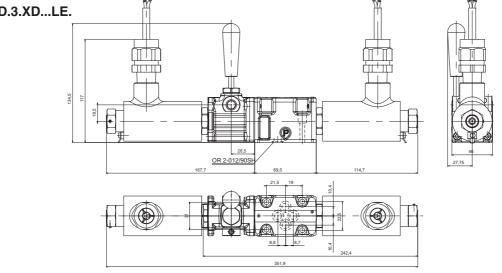
SAFETY INSTRUCTIONS

- Read the instruction handbook supplied with the valves carefully before installation. All maintenances must be carried out following the instructions given in the manual.
- The AD3XD and AD3XS series valves must be installed and serviced in compliance with plant engineering and maintenance regulations for workplaces classified against the risk of explosion due to the presence of gas and dust and gas (for example: CEI EN 60079-14, CEI EN 60079-17, CEI EN 61241-14, CEI EN 61241-17 or other national regulations/standards).
- The valves must be connected to earth using the special anti-loosening and anti-rotation connection element.
- For all safety aspects related to the use of the coils, consult the relative use and maintenance instructions. The electrical appliances/ components must not be opened when live.
- The user must periodically inspect, based on the conditions of use and the substances used, the presence of scale, dirt, the state of wear and tear and correct efficiency of the valves.


Attention: all installation and maintenance jobs must be carried out by qualified personnel.


AD.3.X*... DIRECTIONAL CONTROLE CETOP 3 IN ACCORDANCE WITH 94/9/CE ATEX DIRECTIVE

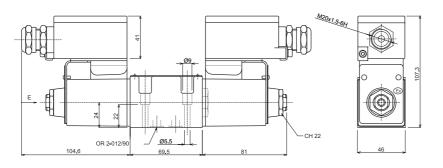
OVERALL DIMENSIONS

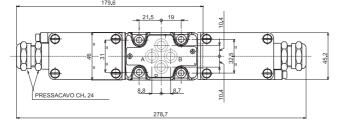

Support surface

specifications

Fixing screws UNI 5931 M5x30 with material specification min.

8.8 Tightening torque 5 Nm / 0.5




Support surface

Fixing screws UNI 5931 M5x30 with material specification min.

Tightening torque 5 Nm / 0.5

AD.3.XS...

Support surface specifications

Fixing screws UNI 5931 M5x30 with material specification min.

8.8 Tightening torque 5 Nm / 0.5

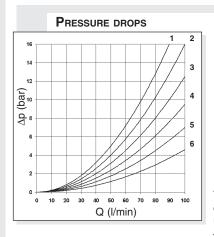
CETOP 5/NG10				
STANDARD SPOOLS	Ch. I page 30			
AD.5.E	Ch. I page 31			
AD.5.EJ*	Ch. I page 32			
AD.5.EQ5	Ch. I page 32			
AD.5.O	Ch. I page 33			
AD.5.D	Ch. I page 33			
AD.5.L	Ch. I page 34			
"A16" DC SOLENOIDS	Ch. I page 35			
"K16" AC SOLENOIDS	Ch. I page 35			
STANDARD CONNECTORS	Ch. I page 19			

DIRECTIONAL CONTROL VALVES CETOP 5/NG100 (170)

Introduction

The ARON directional control valves NG10 designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 05 - 04 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-05), and can be used in all fields on account of their excellent capacity and pressure specifications.

The use of solenoids with wet armatures means that the construction is extremely functional and safe completely dispensing with need for dynamic seals. The solenoid dust cover is screwed directly onto the valve casing whilst the coil is kept in position by a ring nut.


Great care has been taken in the design and the production of the ducts and the improvement of the spools has allowed relatively high flow rates to be accommodated with minimal pressure drops (Δp). The operation of the directional valves can be electrical, pneumatic, oleodynamic, mechanical or lever operated .

The centring position is achieved by means of calibrated length springs which, once the action of impulse is over, return the spool to the centre or end travel position.

The solenoids constructed with protection class in accordance with DIN 40050 standards are available in either direct current (IP65) or alternating current (IP66) with different voltage and frequencies.

All types of electrical controls can be fitted, on request, with different types of manual emergency controls. The electrical supply takes place through connectors meeting DIN 43650 ISO 4400 standards; connectors are also available with built in rectifier or pilot lights.

The valves are designed for use with DIN 51524 standard hydraulic mineral oils and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638, $\beta_{ac} \ge 75$.

The diagram at the side show the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid

temperature of 40°C.

For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \ x \ (Q1/Q)^2$$

where Δp will be the value for the losses for a specific flow rate Q which can be obtained from the diagram, $\Delta p1$ will be the value of the losses for the flow rate Q1 that is used.

Spool type	Connections					
	P→A	Р⊸В	$A \rightarrow T$	B→T	P→T	
01	2	2	5	5		
02	2 3 2 3 2 2	2 3 2 3 2 2	6	6	3	
03	2	2	6	6		
04	3	3	4	4	1	
05	3	3	5	5		
06	2	2	5 5 5 5	5 5		
66	2	2	5	5		
07		1	5			
10	3	3	5	5 5		
11	4			5		
	Curve No.					

Spool	Connections					
type	P <i>→</i> A	P→B	A →T	B→T	P→T	
22		4	5			
14	3	3	6	6	2	
15			4	5 5		
16	2 2 3 3 3 3 3	2 2 3 3 3 3 3	4	5		
17	3	3				
19	3	3	4	5		
20	3	3	4	5		
21	3	3				
28	3	3	6	6	2	
	Curve No.					

ORDERING CODE Directional valve AD 5 CETOP 5/NG10 * Type of operator (tab.1) ** Spools (see tables on page I•30) * Mounting type (tab.2) * Voltage (tab.3) ** Variants (tab.4) 2 Serial No.

Tab.3 - "E" TYPE OPERATION AC VOLTAGE 24V/50Hz Α В 48V/50Hz* 115V/50Hz - 120V/60Hz 230V/50Hz - 240V/60Hz J Ε 240V/50Hz* 24V/60Hz* F **DC VOLTAGE** L 12V 115Vac/50Hz 120Vac/60Hz with rectifier M 24V 48V* Ν Р 110V* 230Vac/50Hz Z 102V***←** 240Vac/60Hz 205V***←** with rectifier Χ K Without AC coils w Without DC coils Ζ other controls Voltage codes are not stamped on the plate, their are readable on the coils.

TAB.1

Electrical

Lever

* Special voltage

Ε

D

0

TYPE OF OPERATOR

Direct mechanical

Oleo-pneumatic

- Mounting type D is only for valves with detent
- In case of **mounting D** with detent a maximum supply time of 2 sec is needed (only for AC coils)
- The springs for the version with detent (mounting **D**) are different from those for standard versions.

Tab.4 - Variants

Variant	Code	*	PAGE
No variant	00		
Viton	V1		
Emergency button	E1		I•35
Pilot light	X1		I•19
Rectifier	R1		I•19
Preset for microswitch - (E/F/G/H only) see below note ◊	M1	•	I•31- I•34
Rotary emergency button	P1		I•35
Solenoid valve without connectors	S1		
Marine version (AD.5.O)	H1	*	
Cable gland "PG 11"	C1		I•19
Emergency + Viton	EV		
Emergency + Pilot light	EX		
Viton + Pilot light	VX		
Emergency + Viton + Pilot light	A1		
Emergency + Rectifier	ER		
Viton + Rectifier	VR		
Viton + Rectifier + Emergency	A2		
Pilot light + Rectifier	XR		I•19
Pilot light + Rectifier + Emergency	A3		
Pilot light + Rectifier + Emergency + Viton	A4		
Preset for microswitch + Viton	MV	•	
Spool movement speed control (VDC only) with ø 0.5 mm diameter orifice	J5	*	I•32
Spool movement speed control (VDC only) with ø 0.6 mm diameter orifice	J6	•	I•32
Spool movement speed control (VDC only) with ø 0.7 mm diameter orifice	J7	*	I•32
Spool movement speed control (VDC only) with ø 0.8 mm diameter orifice	J8	*	I•32
External draining solenoid (electrically operated only)	Q5	•	I•32
Microswitch+ Detent (for lever operation)	MD	•	
Detent for lever control	D1	•	

Two	Two solenoids, spring centred "C" mounting				
Spool type	MA O B W	Covering	Transient position		
01		+	XXXIIII		
02		-			
03	a/XIIII	+			
04*		-			
05		+	XXIII		
66		+	X 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.		
06		+			
07*		+			
08*		+			
10*		+			
22*		+	XHHME		
11*		+			
12*		+			
13*		+			
14*		-			
28*		-			

0	ONE SOLENOID, SIDE A "E" MOUNTING				
Spool type	a/AO	Covering	Transient position		
01		+	XIZI		
02	a/ X I	-	XHH		
03		+	EZZ		
04*		•			
05	a/ X I I	+	XXB		
66	a/XI	+			
06		+	XI.III		
08*		+	Zi.iII		
10*		+	XXI		
12*	a//il	+			
15	a/X	-			
16	a/X	+	X 1.1		
17	a//ili	+	Zi.iII		
14*	a	-			
28*	a/	-			

STANDARD SPOOLS

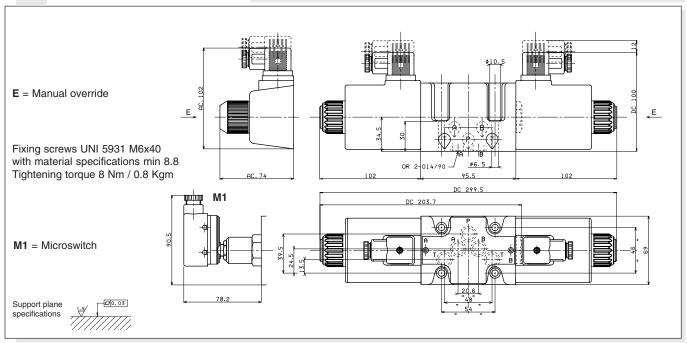
- (*) Spool with price increasing
- \bullet With spools 15 / 16 / 17 only the mounting E / F are possible
- \bullet 19 / 20 / 21 spool not planned for variant $\ J^{\star}$
- \bullet For lever operated the spools used are different. Available spools for this kind of valve are: 01 / 02 / 03 / 04 / 05 / 06 / 66 / 07 22 / 13 / 15 / 16 / 17

ONE SOLENOID, SIDE B "F" MOUNTING				
Spool type	W O B VP	Covering	Transient position	
01	WHITE	+		
02	W###	-		
03	WHILE	+		
04*	WHIXE	-		
05		+	RIII	
66	WHITE	+		
06	wHII	+	Fi.III	
08*	WHILE	+	TT1-11-1 1 11.1 1	
10*	WHILE	+		
22*	WHIFE	+		
12*	WHILE	+		
13*	WHILE	+		
07*	WHILE	+	FIT	
15	wXIII-	-	XHII	
16	wXIII_	+	X1.111	
17	w###	+		
14*	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	EXX	
28*	WHIXE	-		

Two solenoids "D" mounting				
Spool type	Covering Transient position			
19*	a/ XII W	-	XHII	
20*	a/ XIII W	+	XI.T	
21*	a/IIIW	+		

3,5 Kg

4,3 Kg


A max. counter-pressure of 4 bar at T is permitted for the variant with a microswitch (M1).

Max. pressure ports P/A/B	350 bar
Max. pressure port T (DC coil) see note (*)	250 bar
Max. pressure port T (AC coil)	160 bar
Max. flow	100 l/min
Max. excitation frequency	3 Hz
Duty cycle	100% ED
Fluid viscosity	$10 \div 500 \text{ mm}^2/\text{s}$
Fluid temperature	-25°C ÷ 75°C
Ambient temperature	-25°C ÷ 60°C
Max. contamination level	class 10 in accordance with NAS
	1638 with filter ß₂₅≥75
Weight (with one DC solenoid)	4 Kg
Weight (with two DC solenoids)	5,1 Kg

Weight (with two DC solenoids)
Weight (with one AC solenoid)
Weight (with two AC solenoids)

(*) Pressure dynamic allowed for 2 millions of cycles.

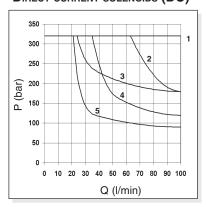
OVERALL DIMENSIONS

LIMITS OF USE (MOUNTING C-E-F)S

The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 40°C. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40°C.

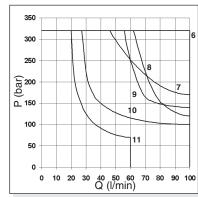
The values in the diagram refer to tests carried out with the oil flow in two directions simultaneously T = 2 bar (e.g. from P to A and the same time B to P).

In the cases where valves 4/2 and 4/3 were used with the flow in one direction only, the limits of use could have variations which may even be negative. Rest time: the values are indicative and depend on the following parameters: hydraulic circuit, fluid used and variations in hydraulic scales (pressure P, flow Q, temperature T).


Direct current : Energizing $60 \div 95$ ms. De-energizing $25 \div 70$ ms.

Alternating current:

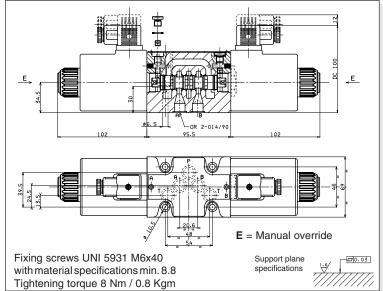
Energizing 12 ÷ 30 ms.


De- energizing 10 ÷ 55 ms.

DIRECT CURRENT SOLENOIDS (DC)

Spool	Solenoids	
type	DC	AC
01	1	8
02	1	6
03	2	7
04	4	10
05	1	6
06 - 66	3	9
14-28	5	11
15	3	10
16	1	6
	Curves	

ALTERNATING CURRENT SOLENOIDS (AC)


Valves type AD5.E... with spool movement speed control variant J* These ON-OFF type valves are used when a lower spool movement speed than usual for conventional solenoid valves is required to prevent impacts which could adversely affect the smooth running of the system. The system consists of reducing the transfer section for the fluid from one solenoid to the other by means of calibrated orifice.

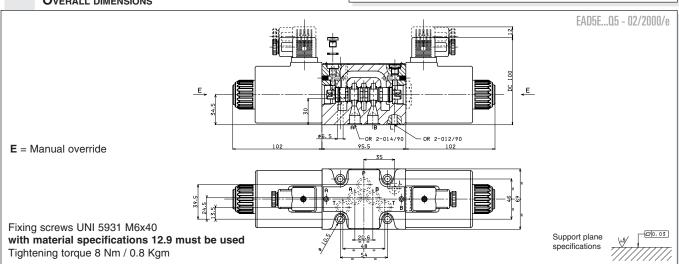
- This version can only be used with a direct current (DC) and also involves a reduction in the limits of use so that we suggest to always test the valve in your application.
- To order AD.5.J* version valves, specify the orifices code.
- The operation is linked to a minimum counter-pressure on the T line (1 bar min.)
- The switching time referred to the spool travel detected by a LVDT transducer can vary for the NG10 valve a minimum of 200 to a maximum of 400 ms depending on 5 fundamental
- 1) Diameter of the calibrated orifice (see table)
- 2) Hydraulic power for clearance referring to flow and pressure values through the valve
- 3) Spool type
- 4) Oil viscosity and temperature
- 5) Counter-pressure at T line
- Possible mounting: C / E / F / G / H
- 19 / 20 / 21 spools not planned for variant J*

CALIBRATED			
ORIFICE AVAILABLE			
ø (mm) M6x6 Code			
0.5	M89.10.0031	J5	
0.6	M89.10.0026	J6	
0.7	M89.10.0032	J7	
0.8	M89.10.0033	J8	

EAD5E...J\$ - 00/2000/e

Max. pressure ports P/A/B	320 bar
Max. pressure port T - see note (*)	250 bar
Max. flow	100 l/min
Duty cycle	100% ED
Fluid viscosity	$10 \div 500 \text{ mm}^2/\text{s}$
Fluid temperature	-25°C ÷ 75°C
Ambient temperature	-25°C ÷ 60°C
Weight with one DC solenoid	3,6 Kg
Weight with two DC solenoids	4,5 Kg
(*) Pressure dynamic allowed for 2 millions of o	evcles.

AD.5.E...Q5 VALVES WITH EXTERNAL DRAINING SOLENOID - VARIANT Q5




Valves type AD5.E... variant Q5 with external draining solenoid This involves valves with solenoid drainage chambers separated by line T in the CETOP 5 interface distinguished by the letter L. This solution makes it possible to operate with a maximum counterpressure at T up to 320 bar using only 12.9 material fixing screws to ensure the maximum safety of the solenoid valve fixing and use of an additional drain. This version can be used for direct current (DC) and alternating current (AC), but involves a reduction in the limits of usage depending on the pressure at T.

- Mounting possible: C/D/E/F/G/H/I/L/M
- For subplate see BSH.5.31..

Max. pressure ports P/A/B/T 320 bar Max. pressure port L (DC coils) see note (*) 250 bar Max. pressure port L (AC coils) 160 bar 100 l/min Max. flow Max. excitation frequency 2 Hz Duty cycle 100% ED Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Weight with one DC solenoid 3,6 Kg Weight with two DC solenoids 4,5 Kg Weight with one AC solenoid 3,5 Kg Weight with two AC solenoids 4,3 Kg (*) Pressure dynamic allowed for 2 millions of cycles.

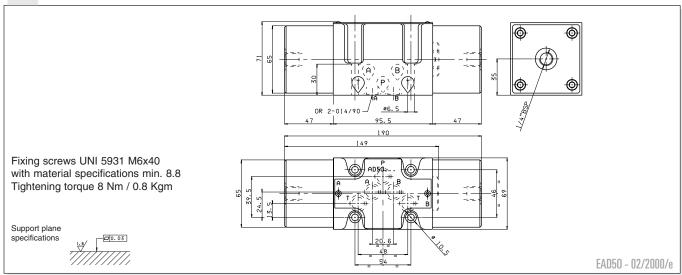
OVERALL DIMENSIONS

Max. pressure ports P/A/B Max. pressure port T Max. flow Min. operating pressure Max. operating pressure Fluid viscosity Fluid temperature

Ambient temperature Max. contamination level

Weight (single pilot) Weight (twin pilot)

320 bar 160 bar 100 l/min 4 + [0.027 x (pt*)] bar - see note 200 bar


10 ÷ 500 mm²/s -25°C ÷ 75°C -25°C ÷ 60°C class 10 in according with NAS

1638 with filter ß₂₅≥75 4,1 Kg 5,4 Kg • Possible mounting: C/D/E/F/G/H/Ĭ L / M

• Ordering code see page I•29

 (pt^*) = Pressure at port T

OVERALL DIMENSIONS

AD.5.D... DIRECT MECHANICALLY OPERATED TYPE VALVES CETOP 5/NG10

Max. pressure ports P/A/B Max. pressure port T Max. flow

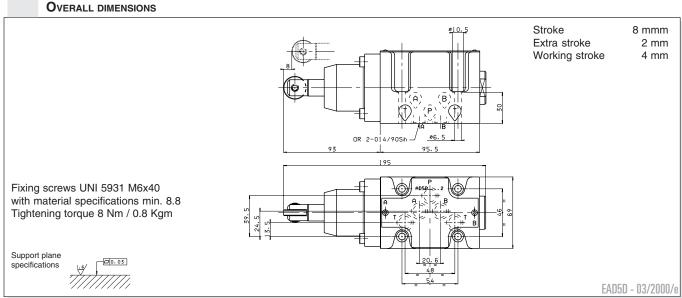
Operating force - see note (*) Fluid viscosity

Fluid temperature Ambient temperature Max. contamination level

Weight

320 bar 20 bar 100 l/min 8 Kg - see note (**) 10 ÷ 500 mm²/s -25°C ÷ 75°C -25°C ÷ 60°C class 10 in accordance with NAS

1638 with filter $\beta_{25} \ge 75$ 3,8 Kg


• Possible mounting: E/F/G/H

· Ordering code see page I•29

• Notes:

(*) In the absence of counter-pressure at port T

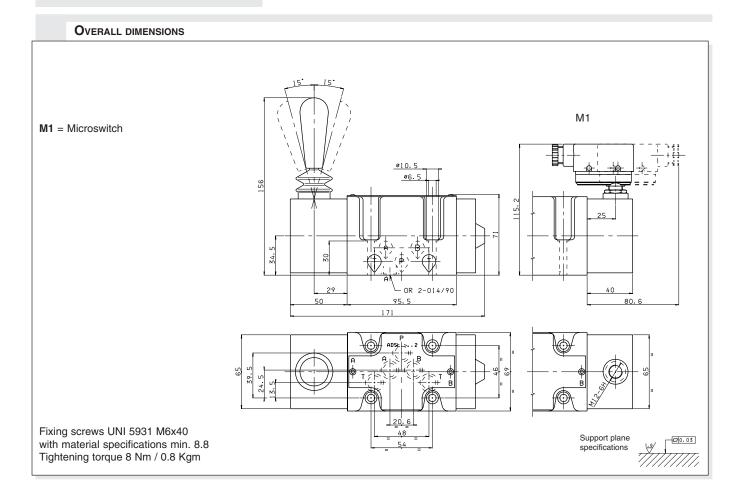
(**)10 Kg with a pressure of 20 bar at T

AD.5.L	

Ch. I page 29

Ch. I PAGE 30

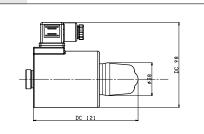
ORDERING CODE

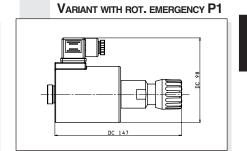

STANDARD SPOOLS

AD.5.L... LEVER OPERATED TYPE VALVES CETOP 5/NG10

Max. pressure ports P/A/B	320 bar
Max. pressure port T	160 bar
Max. flow	100 l/min
Lever angle	2 x 15°
Fluid viscosity	10 ÷ 500 mm²/s
Fluid temperature	-25°C ÷ 75°C
Ambient temperature	-25°C ÷ 60°C
Max. contamination level	class 10 in accordance with
	NAS 1638 with filter B ₂₅ ≥75
Weight	4,7 Kg
Weight with M1 variant	5,35 Kg

- Possible mounting:C / E / F
- There is no **D** type mounting
- The variant **D1** specifies the detent (mechanical connection) for lever operation
- The springs for the version with detent (variant **D1**) are different from those for standard versions.
- Completely different spools are used for these (lever operated) valves than for all other types of operation (e.g. electrical, mechanical, pneumatic operation,)
- Available spools: 01 / 02 / 03 / 04 / 05 / 06 / 66 / 07 / 22 / 13 / 15 / 16 / 17 (for hydraulic symbols see page 1•30)
- Available on request NATIONAL AM1107 type microswitch

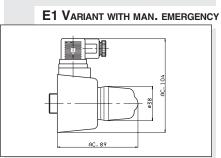


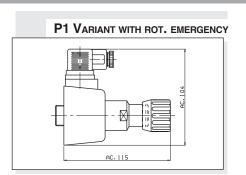


"A16" DC COILS FOR CETOP 5

Oaron

VARIANT WITH MAN. EMERGENCY E1


Type of protection (in relation to the connector used)	IP 65
Number of cycles	18.000/h
Supply tolerance	±10%
Ambient temperature	-30°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	н
Weight	0,9 Kg


Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±7%
12V	106°C	45	3.2
24V	113°C	45	12,4
48V*	-	45	-
102V*	-	45	-
110V*	118°C	45	268
205V*	-	45	-
(*) Special vo	Itage		ETA16 - 03/2002/e

"K16" AC SOLENOIDS FOR CETOP 5

Type of protection (in relation to the connector used)	IP 66
Number of cycles	18.000/h
Supply tolerance	+10% / -10%
Ambient temperature	-54°C ÷ 60°C
Duty cycle	100% ED
Max. pressure static	210 bar
Insulation class wire	Н
Weight	0,8 Kg

Voltage (V)	Max. winding temperature (Ambient temperature25°C)	RATED POWER (VA)	IN RUSH CURRENT (VA)	RESISTANCE AT 20°C (OHM) ±10%
24V/50Hz	134°C	124	454	0.56
24V/60Hz*	115°C	103.5	440	0.55
48V/50Hz*	134°C	113	453	2.10
115V/50Hz-120V/60Hz	121°C - 138°C	-	-	10.8
230V/50Hz-240V/60Hz	121°C - 138°C	-	-	43.0
240V/50Hz*	134°C	120	456	47.39
* Special voltage				ETK16 - 01/2000/e

ADP.5.E..

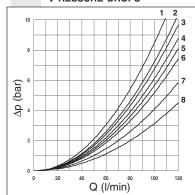
"D19" DC SOLENOIDS	Ch. I page 38
STANDARD CONNECTORS	Ch. I page 19

ADP. 5.E... DIRECTIONAL CONTROL CETOP 5/NG10 HIGH PERFORMANCES SOLENOID OPERATED VALVES

The ARON NG10 directional control valves are designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 05 - 04 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-05). The use of solenoids with wet armatures allows an extremely safe construction completely dispensing with the need for dynamic seal. The solenoid tube is screwed directly onto the valve casing whilst the coil is kept in position by a ring nut. Great care has been taken over the design and production of the ducts and the improvement of the spools allows relatively high flow rates to be accommodated for its size with minimal pressure drops (Δp). The operation of the directional valve is electrical. The centring is achieved by means of calibrated length springs which, once the impulse is over, immediately reposition the spool in the neutral position. The solenoids, constructed with a protection class of IP66 in accordance with BS 5490 standards, are available in direct current form and different voltage. The electrical controls are equipped with an emergency manual control inserted in the tube.

The ADP.5.E.. valve has certain design features which allow it to "manage" a hydraulic power equal to Q = 120l/min with a P = 320 bar, maintaining a considerable safety margin. These features can be summarized as follows:

- Solenoid D19 with an optimum ratio between the power absorbed (42W) and the magnetic force
- Diameter of the spool 18 mm, with carefully designed geometry improved to compensate for the flow forces
- Compact graphite cast iron valve casing with high mechanical resistance
- Different springs, improved according to the features of the spool


The electrical supply connectors meet DIN 43650 ISO 4400 standards; connectors are also available with built in rectifiers or pilot lights.

The recommended fluids are hydraulic mineral based oils in accordance with DIN 51524 and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638, $\beta_{2s} \ge 75$.

For other fluids please contact our Technical DPT.

· The solenoids are in DC voltage only

PRESSURE DROPS

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \times (Q1/Q)^2$$

where Δp will be the value for the losses for a specific flow rate Q which can be obtained from the diagram, $\Delta p1$ will be the value of the losses for the flow rate Q1 that is used.

Spool	Connections				
type	P→A	P→B	$A \rightarrow T$	B→T	P→T
01	4	4	7	7	
02	6	6	8	8	7
03	3	3	8	8	
04	4	4	2	2	3
05	6	6	6	6	
66	4	4	8	7	
06	4	4	7	8	
14	6	4	8	6	2
15-19	2	2	5	5	
16-20	1	1	2	2	
28	4	6	6	8	2
	Curve No.				

ORDERING CODE

(ADP	
- 7		

High performances directional control valve

5

CETOP 5/NG10

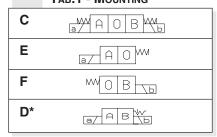
Electrical operator

Spools (Table next page)

Mounting (table 1)

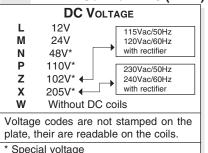
Voltage (table 2)

Variants (table 3)


Serial No.

1)

Tab.3 - Variants


VARIANTS	CODE
No variant	00
Viton	V1
Pilot light	X1
Rectifier	R1
Rotary emergency button	P1
Solenoid valve without connectors	S1
Cable gland "PG 11"	C1
Viton + Pilot light	VX
Viton + Rectifier	VR
Pilot light + Rectifier	XR
Adjustable spool movement	
speed control	Q4
With solenoid chamber external	
drainage (Y)	Q5

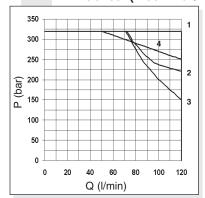
Tab.1 - Mounting

(*) Valve with detent

TAB.2 - SOLENOID D19 (42 W)

STANDARD SPOOLS

Two solenoids, spring centred "C mounting"				
Spool type	MA OB W	Covering	Transient position	
01		+		
02		-		
03		-		
04*		-		
05		-		
66		-		
06		-		
14*		-		
28*		-		


	ONE SOLENOID, SIDE A "E MOUNTING"				
Spool type	a/ A O	Covering	Transient position		
01		+			
02		-			
03		-	CHIX		
04*		-			
05		-			
66		-	MH! I		
06		-			
14*	a/ XIII	-			
15	a/ X I W	-	MIHIT.		
16		+			
28*	e/ Nim	-			

* Spools with price increasing

Two solenoids "D mounting"			
Spool type	a/ABWb	Covering	Transient position
19*	a/ Wb	-	XHII
20*	a/ XIII W	+	XI.TI

ONE SOLENOID, SIDE B "F MOUNTING"				
Spool type	W O B VB	Covering	Transient position	
01	WHITE	+		
02		-		
03	WHITE	-		
04*	WHIAL	-		
05		-	FIHM	
66	WIII TO	-		
06	WHILE	-	SHM	
14*	with the	-		
15	w\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	MIHIM	
16	WXIII-	+		
28*	WHITE	-		

LIMITS OF USE (MOUNTING C-E-F)

S	Spool	n°
ty	/ре	curves
	01	1
	02	1
	03	2
	04	1
	05	1
	66	1
	06	1
	14	3
	15	1
	16	1
	28	3
	19	4
	20	4

The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 50° C.

The fluid used was a mineral oil with a viscosity of 46 mm $^{\!2}\!/\!s$ at $40^{\circ}\text{C}.$

The values in the diagram refer to tests carried out with the oil flow in two directions simultaneously (e.g. from P to A and at the same time B to T).

In the cases where valves 4/2 and 4/3 were used with the flow in one direction only, the limits of use could have variations which may even be negative.

The tests were carried out with a counter-pressure of 2 bar at T.

Max. operating pressure: ports P/A/B 350 bar 250 bar Max. operating pressure: port T (*) Max. flow 120 l/min Max. excitation frequency 3 Hz Duty cycle 100% ED Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ 5 Kg Weight with one DC solenoid Weight with two DC solenoids 6,5 Kg

 Applicable hydraulic power, related to the flow rate and pressure drop across the valve;

ADP.5.E... Q4 variant - These ON-OFF type valves are used when a

lower spool movement speed is required than it is generally available with

a conventional solenoid valve in order to avoid those shocks which might

otherwise compromise proper system operation. This is obtained by

forcing the fluid to pass through the gap which exists between the screw

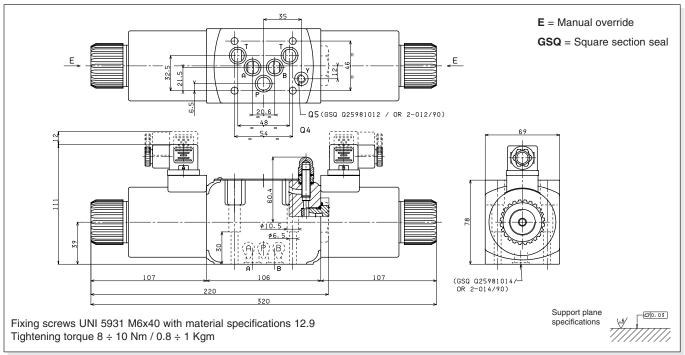
thread and the M8x1 tapped thread, restricting in this way the transfer

cross section between the 2 solenoid chambers. Using this variant may

entail a reduction in the operational limits according to the spool used, up

to the complete blocking of the change over itself. The valve operation

depends on the presence of a minimum back pressure on the T line (min. 1 bar). The change over time referred to the spool stroke depends on 4

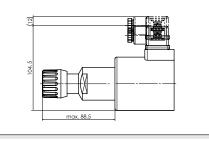

- Spool type (system configuration);
- Oil viscosity and temperature;
- Back pressure on T.

main variables:

(*) Pressure dynamic allowed for 2 millions of cycles

Pressure on port T valid in case Y is blocked (no external drainage). Normally the external drainaged is blocked with a plug S.T.E.I M6x6 UNI 5923

ADP.5.E... Q5 variant - These are valves with solenoid chambers drainage separated from the T line, obtained on CETOP RO5 interface and characterized by the letter Y. This solution allows operation with up to 320 bar max. back pressure on the T line while using only 12.9 material fixing screws to ensure maximum solenoid valve mounting safety and supplementary drainage.



"D19" DC SOLENOIDS

Type of protection (in relation to the connector used)	IP 66
Number of cycle	18.000/h
Supply tolerance	±10%
Ambient temperature	-54°C ÷ 60°C
Duty cycle	100% ED
Max static pressure	210 bar
Insulation class wire	н
Weight	1,63 Kg

P1 ROTARY EMERGENCY

Voltage (V)	Max winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	105°C	42	3.43
24V	105°C	42	13.71
48V*	105°C	42	55
102V*	105°C	42	248
110V*	105°C	42	288
205V*	105°C	42	1000
* Special volt	age		ETD19 - 03/2000/e

ADP.5.V	
"D19" DC SOLENOIDS	Ch. I page 39
STANDARD CONNECTORS	Ch. I page 19
L.V.D.T.	Ch. I page 21

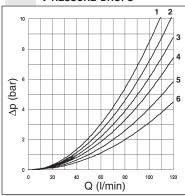
ADP.5.V... WITH PROXIMITY SENSOR L.V.D.T. CETOP 5/NG10

aran

The ARON NG10 directional control valves are designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 05 - 04 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-05).

The single solenoid directional valves type ADP5V are used in applications where the monitoring of the position of the spool inside the valve is requested to manage the machine safety cycles in according with the accident prevention legislation. These directional valves are equipped with

350 bar
250 bar
120 l/min
3 Hz
100% ED
÷ 500 mm ² /s
·25°C ÷ 75°C
25°C ÷ 60°C
n accordance
າ filter ິດ ₂₅ ≥75
25


(in relation to connector used) IP 66 Weight 6,2 Kg

(*) Pressure dynamic allowed for 2 millions of cycles

an horizontal positioned inductive sensor on the opposite side of the solenoid, which is capable of providing the first movement of the valve when the passage of a minimum flow is allowed. Integrated in safety systems, these valves intercept actuator movements that could be dangerous for the operators and for the machine.

- Possible mountings: E / F
- The solenoid is in DC voltage only

PRESSURE DROPS

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \times (Q1/Q)^2$$

where Δp will be the value for the losses for a specific flow rate Q which can be obtained from the diagram, $\Delta p1$ will be the value of the losses for the flow rate Q1 that is used.

Spool type	Connections				
type	P→A	Р⊸В	A →T	B→T	P→T
01	3	3	5	5	
02	4	4	6	6	5
66	3	3	6	5	
06	3	3	5	6	
16	1	1	2	2	
	Curve No.				

ORDERING CODE

ADP

High performances directional control valve

5

CETOP 5/NG10

٧

Directional valve with single solenoid and L.V.D.T. proximity sensor

Spool and mounting (table 1)

Voltage (table 2)

**

Variants (table 3)

1

Serial No.

registered mark for industrial environment with reference to the electromagnetic compatibility.

European norms:

- EN50082-2 general safety norm industrial environment
- EN 50081-1 emission general norm residential environment

TAB.2 - DC VOLTAGE

DC VOLTAGE 12V 115Vac/50Hz M 24V 120Vac/60Hz with rectifier N 48V* 110V³ 230Vac/50Hz Z 102V* 240Vac/60Hz with rectifier X 205V* Without DC coils and connectors Voltage codes are not stamped on the plate, their are readable on the coils.

* Special voltage

Тав1	- STANDARD	SPOOL
------	------------	--------------

ONE SOLENOID			
Spool type	MAOBW BADBW	Covering	Transient position
01E		+	
01F	WHINE	+	
02E	a/ XI W	-	MHIM
02F	WHILE	-	\square
66E	a/ Mi w	-	XIHI; II
06F	WHILE	-	[∃]H ↑↓
16E	a/ XIII	+	
16F	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+	
32E		+	

TAR 2 - VARIANTO

I AB.3 - VARIANTS	
VARIANTS	CODE
No variant (connectors as in the drawing)	00
Pilot light	X1
Rectifier	R1
Rotary emergency button	P1
Solenoid valve without connectors (coils)	S1
Without proximity connector LVDT	S3
Without coils and proximity connector	S4
Cable gland "PG 11"	C1
With solenoid chamber external	
drainage (Y)	Q5

OVERALL DIMENSIONS

E = Manual override

GSQ = Square section seal

E = Manual override

GSQ = Square section seal

Fixing screws UNI 5931 M6x40
with material specifications 12.9

Tightening torque

8 + 10 Nm / 0.8 + 1 Kgm

"D19" DC SOLENOIDS

Type of protection (in relation to the connector used)	IP 66
Number of cycle	18.000/h
Supply tolerance	±10%
Ambient temperature	-54°C ÷ 60°C
Duty cycle	100% ED
Max static pressure	210 bar
Insulation class wire	н
Weight	1,63 Kg

P1 ROTARY EMERGENCY

Voltage (V)	Max winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	105°C	42	3.43
24V	105°C	42	13.71
48V*	105°C	42	55
102V*	105°C	42	248
110V*	105°C	42	288
205V*	105°C	42	1000
* Special volta	age		ETD19 - 03/2000/e

AD.3.I...

AD.3.I... AUTOMATIC RECIPROCATING VALVES CETOP 3

() aron

These automatic reciprocating valves, with interface UNI ISO 4401 - 03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03), reverse the movement of an actuator every time the flow through the valve stops.

With no max. pressure valves inside the body, the spool is moved by two springs and locked by unbalanced pressure inside valve; when no more flow is crossing the valve, the spool changes the position inverting the direction of the actuator.

With a preferential starting P \rightarrow B and A \rightarrow T position, these valves are mainly used to control the movement compactors or system where is not possible to use electrical device.

with NAS 1638 with filter $\beta_{25} \ge 75$ Positioner activating force 130 N

(measured with 1 bar on the T line)
Weight of version without positioner
0,95 Kg
Weight of version with positioner
1 Kg

(*) Max contamination level must be respect to obtain the right function of the valve

ORDERING CODE

AD

3

ī

Ρ

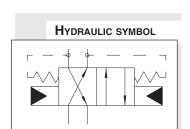
**

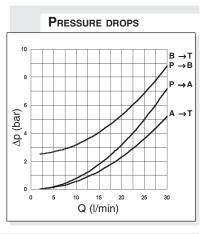
1

Directional valve

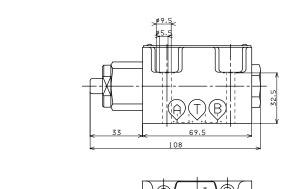
CETOP 3/NG6

Automatic reciprocating valve at null flow

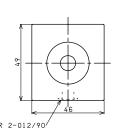

Version with positioner to adjust the pressure relief valve of the system

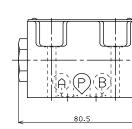

00 = No variant **V1** = Viton

VI = VIIO


Serial No.

Tests carried out with mineral oil at a temperature of 40°C with viscosity of 46 mm²/s.





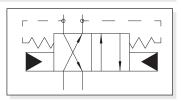
OVERALL DIMENSIONS

Fixing screws UNI 5931 M5x40 with material specifications min. 8.8 Tightening torque 5 Nm / 0.5 Kgm

Support plane specifications

AD.5.I...

AD.5.I... AUTOMATIC RECIPROCATING VALVES CETOP 5


The operating principle of this type of inverter valve, with interface UNI ISO 4401 - 05 - 04 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-05), is based on the pressure unbalanced created in its interior as a consequence of the fluid flow rate. On starting the system this valve assumes always a preferential position $P\!\to B$ e $A\to T$.

When a pressure is applied to the cylinder which exceeds the system maximum flow rate valve calibration value (e.g. end stroke actuator), a hydraulic unbalanced is generated capable of changing over the valve and inverting the cylinder direction of the movement

 $\begin{tabular}{lll} Max. operating pressure port P & 320 bar \\ Max. flow & 100 l/min \\ Minimum permitted flow & 10 l/min \\ Fluid viscosity & 32 ÷ 60 mm²/s \\ Fluid temperature & -20°C ÷ 60°C \\ Max. contamination level(*) class 10 in accordance \\ & with NAS 1638 with filter <math>β_{os} \ge 75 \\ \end{tabular}$

Positioner activating force 190 N (measured with 1 bar on the T line)
Weight of version without positioner 3,4 Kg
Weight of version with positioner 3,6 Kg

(*) Max contamination level must be respect to obtain the right function of the valve

ORDERING CODE

AD

Directional control

5)

CETOP 5/NG10

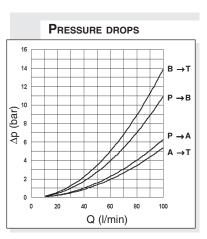
Automatic reciprocating valve at null flow

P

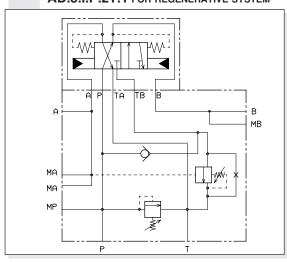
Version with positioner to adjust the pressure relief valve of the system

**

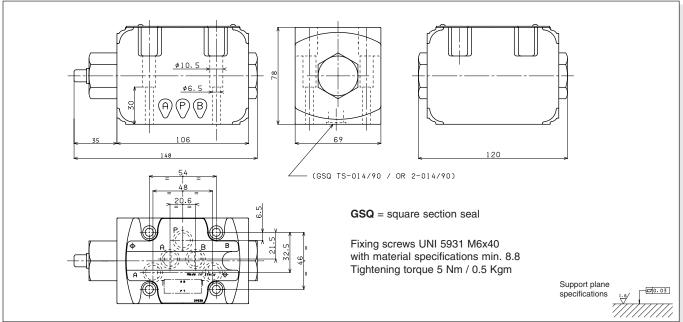
00 = No variant


V1 = Viton

2T = Variant for regenerative system


1

Serial No.


Tests carried out with mineral oil a temperature of 40°C with a viscosity of 46 mm²/s.

AD.5.I.P.2T.1 FOR REGENERATIVE SYSTEM

Version AD.5.I.P.2T.1 integrated in a regenerative circuit for compactors with roll on-off mobile system, solution useful for all applications where to connect microswitch of proximity is not possible. For any information about our regenerative manifold Aron please contact our technical department. For special subplate BS.5.RIA see Chapter X "Systems", next pages.

AD.3.RI...

ORDERING CODE

AD

Directional valve

3

CETOP 3/NG6

RI

Automatic reciprocating valve hydraulically operated automatic reciprocation

211

Scheme

 $\left(egin{array}{c} {\sf Z} \end{array}
ight)$

No voltage

*

Setting ranges:

 $1 = 15 \div 50 \text{ bar}$

 $2 = 20 \div 140 \text{ bar}$

 $3 = 50 \div 320 \text{ bar}$

**

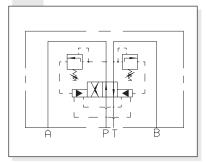
00 = No variant

V1 = Viton

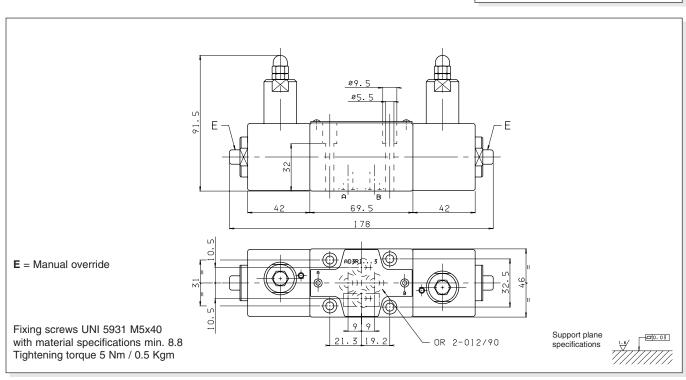
3

Serial No.

AD.3.RI... AUTOMATIC RECIPROCATING VALVES CETOP 3


This valve type is characterized by fully hydraulic operation, as it takes advantage of the system pressure rise to cause an automatic and continuous inversion of the utilization. The changeover takes place when the system pressure exceeds the inversion valves calibration pressure, and therefore also in not predetermined positions. At cylinder stroke end, the overall maximum pressure valve should be adjusted on a value 30% higher than the system operating pressure.

The inverter valves pressure calibration values should be 15% lower than that of the overall maximum pressure valve, and 15% higher than the maximum operating pressure.


Note: to operate the push button emergency, a minimum pressure of 3 bar on the actuator is needed.

Max. operating pressure 320 bar Max. pressure port T 160 bar Min. recommended pressure 15 bar Max. flow 25 l/min Min. flow 2 l/min Setting ranges: Spring 1 15 ÷ 50 bar Spring 2 20 ÷ 140 bar Spring 3 50 ÷ 320 bar Fluid viscosity 10 ÷ 60 mm²/s -20°C ÷ 75°C Fluid temperature Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ Weight

HYDRAULIC SYMBOL

Tes caron

AD.5.RI...

ORDERING CODE

AD

Directional valve

5

CETOP 5/NG10

RI

Automatic reciprocating valve hydraulically operated automatic reciprocation

211

Scheme

Z

No voltage

*

Setting ranges:

 $1 = 15 \div 50 \text{ bar}$

 $2 = 20 \div 140 \text{ bar}$

 $3 = 50 \div 320 \text{ bar}$

**

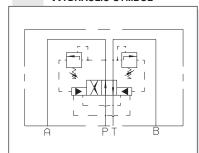
00 = No variant

V1 = Viton

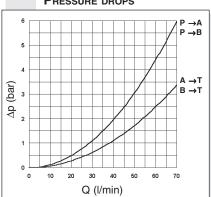
3

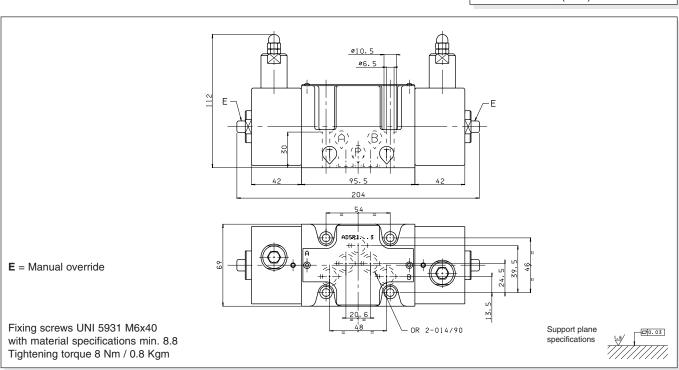
Serial No.

AD.5.RI... AUTOMATIC RECIPROCATING VALVES CETOP 5


This valve type is characterized by a fully hydraulic operation, as it takes advantage of the system pressure rise to cause an automatic and continuous inversion of the utilization. The changeover takes place when the system pressure exceeds the inversion valves calibration pressure, and therefore also in not predetermined position. At the cylinder stroke end, the overall maximum pressure valve should be adjusted on a value 30% higher than the system operating pressure.

The inverter valves pressure calibration values should be 15% lower than that of the overall maximum pressure valve, and 15% higher than the maximum operating pressure.


Note: to operate the push button emergency, a minimum pressure of 3 bar on the actuator is needed.


Max. operating pressure 320 bar Max. pressure port T 160 bar Min. recommended pressure 15 bar Max. flow 70 l/min Min. flow 6 l/min Setting ranges: Spring 1 15 ÷ 50 bar Spring 2 20 ÷ 140 bar Spring 3 50 ÷ 320 bar Fluid viscosity 10 ÷ 60 mm²/s -20°C ÷ 75°C Fluid temperature Max. contamination level class 10 in accordance with NAS 1638 with filter B₂₅≥75 Weight

HYDRAULIC SYMBOL

PRESSURE DROPS

ADPH.5	
STANDARD SPOOLS FOR ADPH.5	Ch. I page 46
Tech. specifications ADPH5	Ch. I page 47
CETOP 2/NG04	Ch. I page 2
AD.2.E	Ch. I page 4
"A09" DC Coils	Ch. I page 4
STANDARD CONNECTORS	Ch. I PAGE 19

ADPH.5... PILOTED VALVES CETOP 5/NG10 WITH CETOP 2/NG4 PILOT VALVE

() aron

These ADPH 5 valves are used primarily for controlling the starting, stopping and direction of fluid flow. These kind of distributors are composed by a main stage crossed by the big flow from the pump (ADPH.5) and by a cetop 2 pilot directional solenoid valve (AD.2.E) available with different mounting type .

When a short response time is requested, a special version of solenoids with high dynamics is available with the code AD.2.E.**.**FF.2 (Please, contact our Technical Aron Service).

HYDRAULIC SYMBOL A B B T

ORDERING CODE

ADPH Piloted valve

*

00

1

The pilot valves AD.2.E... must be ordered separately

5 CETOP 5/NG10

**) | Spool type (Table next page)

*____ Mounting (Table next page)
Standard orifice at port P: Ø 1mm

Orifice type on Cetop 2 valves (Table 1)

0 = none

A/B/C/D/E/F/G = orifice

on line A

H/I/L/M/N/P/Q = orifice on line B

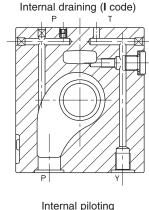
Piloting and draining type (Tab.2)

I = internal piloting internal draining

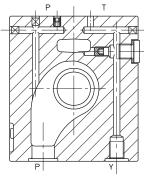
E = internal piloting external draining

X = external piloting internal draining (special body)

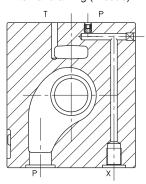
No variant


Serial No.

Tab.1 - Orifice on Line A/B

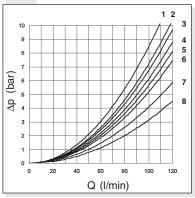

On line A	On line B	ø(mm)
0	0	None
Α	Н	0,5
В	I	0,6
С	L	0,7
D	М	0,8
E	N	0,9
F	P	1
G	Q	1,2

TAB.2 - PLUGS DISPOSAL


Internal piloting

Internal piloting External draining (**E** code)

External piloting Internal draining (X code)


HYDRAULIC SYMBOLS, SPOOLS AND MOUNTING					
	"A" MOUNTING				
Pilot Piloted					
Scheme					
Spool type	AB M_ a O	Covering	Transient position		
01		+			
02		-			
03	X	-			
04*		-			
06		+			
15	X	-	XHI		
16		+	XI.I		

	"C" MOUNTING		
Pilot Piloted			
Scheme			
Spool type	A, B Ma o b M	Covering	Transient position
01		+	XXXIII
02		-	XHHHI
03	XHI	-	
04*		-	
06	XHIII	+	

(* Spools with price increasing)

	(* Spools with price increasing			
		"B" mounting		
Pilot Piloted				
Scheme				
Spool type	A, B MO b.	Covering	Transient position	
01	<u> </u>	+		
02		-		
03		-		
04*		-		
06	FI	+		
15	XIII	-		
16	XIII	+	XI.III	

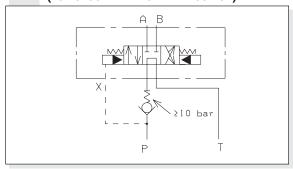
PRESSURE DROPS

The diagram at the side shows the pressure drop curves for spools during normal usage. The used fluid is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For flow rates higher than those in the diagram, the losses will be those expressed by the following formula: $\Delta p1 = \Delta p \ x \ (Q1/Q)^2$

$$\Delta p1 = \Delta p \times (Q1/Q)$$

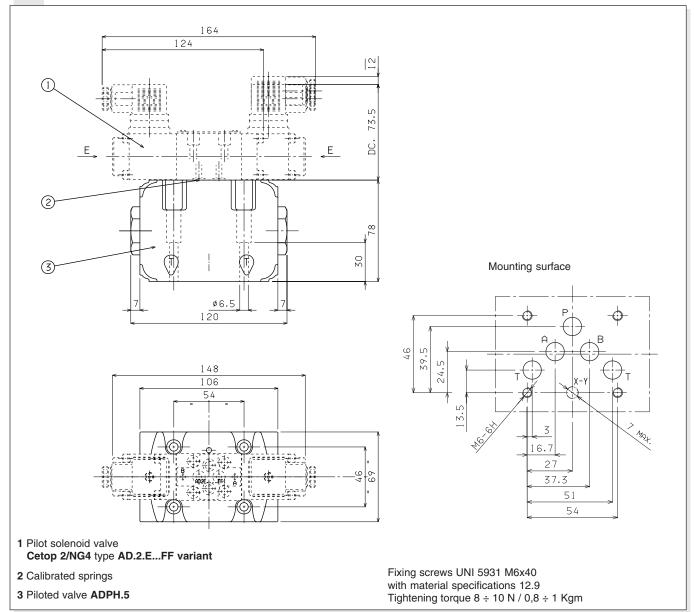
where Δp will be the value for the losses for a specific flow rate Q which can be obtained from the diagram, $\Delta p1$ will be the value of the losses for the flow rate Q1 that is used.

Spool type	Connections				
type	P→A	Р⊸В	A→T	B→T	P→T
01	4	4	7	7	
02	6	6	8	8	7
03	3	3	8	8	
04	4	4	2	2	3
06	4	4	7	8	
15	2	2	5 2	5	
16	1	1	2	2	
	Curve No.				



PILOT SOLENOID CONTROL VALVE SPECIFICATIONS

Max. operating pressure: ports P/A/B	250 bar
Max. operating pressure: port T (dynamic)	70 bar
Max. piloting pressure	250 bar
Min. piloting pressure	10 bar
Max. flow	120 l/min
Switching times (*see note below)	Energizing: 20 ms
,	De-energizing: 50 ms
Piloting oil volume for engagement	1 cm ³
Hydraulic fluid	mineral oil DIN 51524
Fluid viscosity	10 ÷ 500 mm ² /s
Fluid temperature	-20°C ÷ 75°C
Max. contamination level	class 10 in accordance
	with NAS 1638 with filter B ₂₅ ≥75
Mounting	plate
Weight ADPH5 without pilot valve	3,4 Kg
Weight ADPH5 with pilot valve with one so	lenoid 4,3 Kg
Weight ADPH5 with pilot valve with two so	lenoids 4,5 Kg


(*) All the tests have been carried out with AD.2.E pilot valve with variant FF, mounting type C, spool 03, flow 100 l/min,pressure 160 bar, back pressure on the T line of 2 bar and oil temperature 40° C.

EXTERNAL BACK PRESSURE ON LINE P (FOR SPOOL IN THE CENTRE POSITION)

When the main spool connect P to T in the centre position, the minimum pressure of 10 bar is needed to move the main spool (see the "Specifications"); for this reason a check valve on the P line (see the drawing above) is necessary.

OVERALL DIMENSIONS AND MOUNTING SURFACE

ADH.5				
STANDARD SPOOLS FOR ADH.5	Ch. I page 49			
Tech. specifications ADH.5	Ch. I page 50			
SUBPLATES BSH.5	Ch. I page 51			
CMP.30 BFP CART	RIDGE CATALOGUE			
CETOP 3/NG06	Ch. I page 8			
STANDARD SPOOLS FOR AD.3.E	Ch. I page 10			
AD.3.E	Ch. I page 11			
"D15" DC coils	Ch. I page 18			
"K12" AC SOLENOIDS	Ch. I page 18			
STANDARD CONNECTORS	Ch. I page 19			

ORDERING CODE

ADH)

Piloted valve (Pilot valve and any mounting valves should be ordered separately)

CETOP 5/NG10

Mounting type (Table next page)

Spool type (Table next page)

Piloting and draining

I = X internal / Y internal

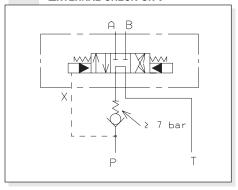
IE = X internal / Y external

EI = X external / Y internal

E = X external / Y external (see diagram at side)

**

00 = No variant


LC = Main spool

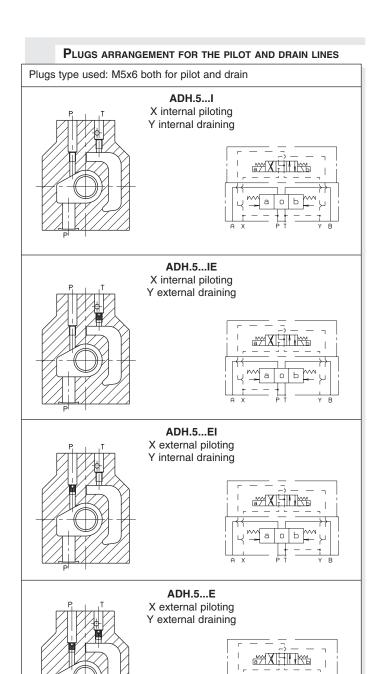
stroke limiter

1

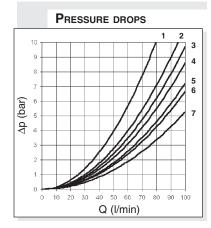
Serial No.

EXTERNAL CHECK ON P

ADH.5... 4/3 AND 4/2 PILOTED VALVES CETOP 5/NG10



Type ADH.5 distributors are intended for interrupting, inserting and diverting a hydraulic system flow. Normally these distributors are composed of a main stage, crossed by circuit main flow, and of a pilot stage available in several versions.


Various types of controls are available, used either individually or in combination for, among other functions, stroke limitation and main spool movement speed control, in order to optimize the hydraulic system operation where this type of valve is employed.

In those case where normally to drain spools are used, it is necessary to remember that the minimum changeover pressure due to the opposing springs is equal to approximately 7 bar (see the operating features table on page I•45) and consequently necessary to insert a check valve in the P way (as shown above).

- Mounting surface in accordance with UNI ISO 4401 05 05 0 94 standard (ex CETOP R 35 H 4.2-4-05).
- Pilot operated spool, solenoid controller.
- Stroke control of main spool.
- Presetting for pressure reducing valve mounting.
- Presetting for single-acting throttle valve mounting.

The diagram an the side shows the pressure drops in relation to spools adopted for normal usage (see table).

Tests carried out at a constant temperature of $40^{\circ}\mathrm{C}$

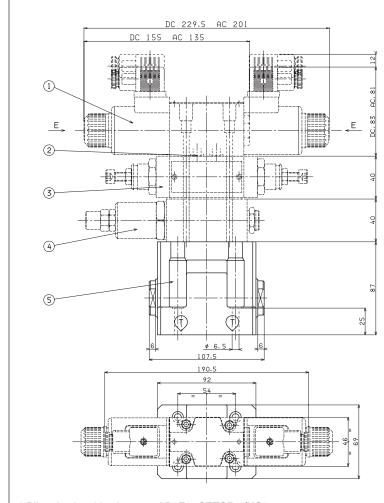
The fluid used was a mineral based oil with a viscosity of 46 mm 2 /s at 40 $^\circ$ C.

Spool	Connections				
type	P⊸A	P→B	A →T	B→T	P→T
01	3	3	5	5	
02	3	3	6	6	3
03	3	3	6	6	
04	2 3	2 3	5	5	1
05	3		5	5	
06-66	3	3	6	6	
07		1	6		
10	3	3	6 5	5	
11	4		5		
22		4	5		
14-28	3	3	7	7	2
15	3 3	3	4	5 5	
16		3	4	5	
17	3	3			
	Curve No.				

Spe	Spools and mounting type (* Spools with price increase				
	C mounting	A mounting	B mounting	Mounting P	
Pilot Piloted	AD.3.E.03.C ADH.5.C	AD.3.E.03.E	AD.3.E.03.F ADH.5.B	AD3E16E/AD3E16F ADH.5.P	
Scheme					
Spool type	A X PT Y B	A X PT Y B	A X PT Y B	A X PT Y B	
01				X 1.1 X	
02	XHHHM				
03					
04*					
05				XHD	
66			T T T T	X1	
06					
07*				XHB	
10*			X X 1 - X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
11*					
22*		XIIII		XIII	
14*			EIXIX		
28*					
15		XHII	XHII		
16					
17					

PILOT SOLENOID CONTROL VALVE SPECIFICATIONS

FOR DIFFERENT CONTROLS, PLEASE CONTACT OUR TECHNICAL ARON SERVICE

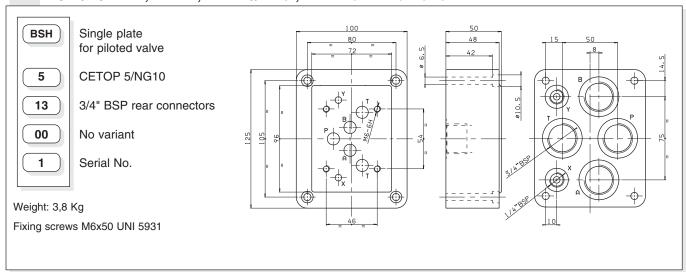

Max. operating pressure ports P/A/B	320 bar
Max. operating pressure port T (int. drainage)	160 bar
Max. pressure on T (ext. drainage)	250 bar
Max. piloting pressure	250 bar
Min. piloting pressure	7 bar
Max. flow	100 l/min
Piloting oil volume engagement 3 position valves	0,8 cm ³
Piloting oil volume engagement 2 position valves	1,6 cm ³
Hydraulic fluid	mineral oil DIN 51524
Fluid viscosity	$10 \div 500 \text{ mm}^2/\text{s}$
Fluid temperature	-20°C ÷ 75°C
Max. contamination level cla	ass 10 in accordance with
N.	AS 1638 with filter B ₂₅ ≥75
Weight ADH5 without pilot valve	2,7 Kg
Weight ADH5 with pilot valve with 1 AC solenoid	4 Kg
Weight ADH5 with pilot valve with 1 DC solenoid	4,2 Kg
Weight ADH5 with pilot valve with 2 AC solenoids	4,3 Kg
Weight ADH5 with pilot valve with 2 DC solenoids	4,7 Kg


OPERATIN PRESSUR (bar)		ENERGIZING centre-extern (ms)	DE-ENERGIZING extern-centre (ms)
50 100 200	ALTERNATING	30 25 20	50
50 100 200	DIRECT	40 35 30	60

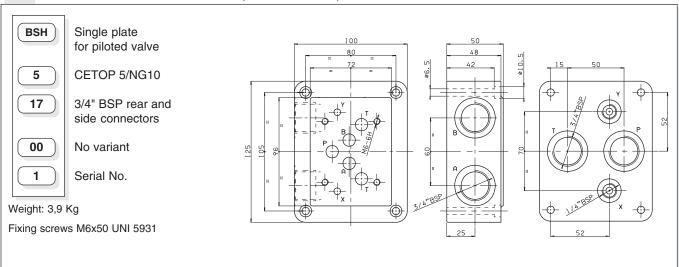
3 position valve. The values are indicative and depend on the hydraulic circuit, the fluid used and the variations in pressure, flow rate and temperature.

OVERALL DIMENSIONS

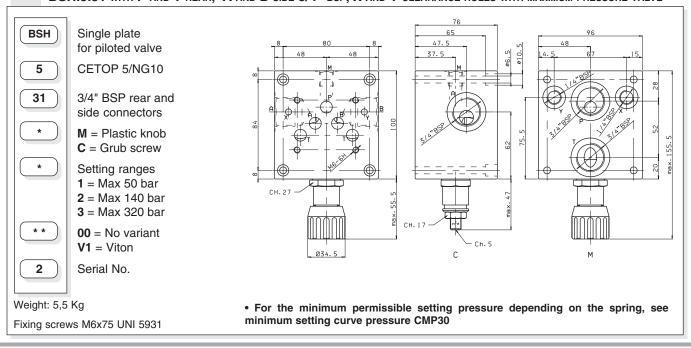
CETOP **5** MOUNTING SURFACE



SPOOL STROKE ADJUSTMENT


- 1 Piloted solenoid valve type AD3E... CETOP 3/NG6
- 2 Calibrated diaphragms for AD3E... 3 Flow regulation valve type AM3QF..C
- 4 Pressure reduction valve type AM3RD..C
- 5 Main valve type ADH5..E

Fixing screws UNI 5931 M6x35 with material specifications 12.9 Tightening torque 8 N / 0,8 Kgm


BSH.5.13 WITH P, T AND A, B REAR 3/4" BSP, X AND Y CLEARANCE HOLES

BSH.5.17 WITH P AND T REAR AND A, B SIDE 3/4" BSP, X AND Y CLEARANCE HOLES

BSH.5.31 WITH P AND T REAR, A AND B SIDE 3/4" BSP, X AND Y CLEARANCE HOLES WITH MAXIMUM PRESSURE VALVE

ADH.7				
STANDARD SPOOLS FOR ADH.7	Ch. I page 53			
Tech. specifications ADH.7	Ch. I page 54			
SUBPLATES BSH.7 C	н. I раде 55/56			
CETOP 3/NG06	Ch. I page 8			
STANDARD SPOOLS FOR AD.3.E	Ch. I page 10			
AD.3.E	Ch. I page 11			
ADC.3	Ch. I page 5			
"A09" DC Coils	Ch. I page 7			
"D15" DC Coils	Ch. I page 18			
"K12" AC SOLENOIDS	Ch. I page 18			
STANDARD CONNECTORS	Ch. I page 19			

ORDERING CODE

ADH

**

*

Piloted valve - Pilot valves and any modulating valves should be ordered separately

7 CETOP 7/NG16

Mounting type (see next page)

Spool type (see next page)

Piloting and draining

I = X internal / Y internal

IE = X internal / Y external

EI = X external / Y internal

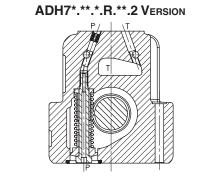
 $\mathbf{E} = X \text{ external } / Y \text{ external}$

(see Tab.1 at side)

R

Check valve incorporated at port P (Tab. 2) Only for I and IE versions (omit if not required)

**


2

00 = No variant

LC = Main spool stroke limiter

Serial No.

TAB. 2 - INTERNAL CHECK ON P

• For the spools 02-04-14-28 the piloting is normally external; the internal piloting is possible only with the internal check valve (R).

ADH.7... 4/3 AND 4/2 PILOTED VALVES CETOP 7/NG16

Type ADH.7 distributors are intended for interrupting, inserting and diverting a hydraulic system flow. Normally these distributors are composed of a main stage, crossed by the circuit main flow, and of a pilot stage available in several versions.

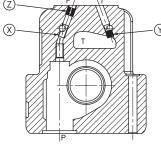
Various types of controls are available, used either individually or in combination for, among other functions, stroke limitation and main spool movement speed control, in order to optimize the hydraulic system operation where this type of valve is employed.

In those cases where normally to drain spools are used, it is necessary to remember that the minimum changeover pressure due to the opposing springs is equal to approximately 5 bar (see the operating features table next pages) and it is consequently necessary to specify when ordering the check valve incorporated in the P line, if required (as shown below).

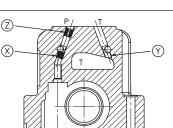
- Mounting surface in accordance with UNI ISO 4401 07 06 0 94 standard (ex CETOP R 35 H 4.2-4-07).
- Pilot operated spool, solenoid controller.
- Stroke control of main spool.
- · Presetting for pressure reducing valve mounting.
- Presetting for single-acting throttle valve mounting.

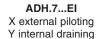
TAB.1 - PLUGS ARRANGEMENT FOR THE PILOT AND DRAIN LINES

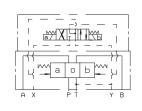
Plugs type used: M5x5 both for pilot and drain.

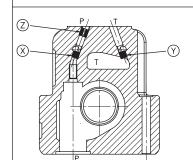

Note: standard M6x6 orifice Ø1,5 insert in the P port (Z)

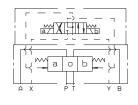
ADH.7...I

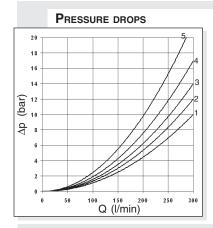

X internal piloting
Y internal draining


ADH.7...IE


X internal piloting
Y external draining



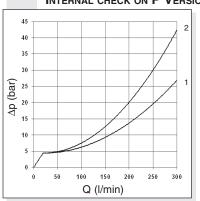




ADH.7...E

X external piloting
Y external draining

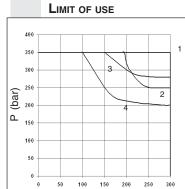
() aran



The two diagrams show the "Pressure drops" in relation to spools adopted for normal usage (see table).

The fluid used was a mineral based oil with a viscosity of 46 mm²/s at 40° C.

Spool	Connections							
type		P→A	Р⊸В	A→T	B→T	P→T		
01	ENERGIZING	2	1	3	3			
"	DE-ENERGIZ.							
02	ENERGIZING	1	1	3	3			
02	DE-ENERGIZ.					2		
03	ENERGIZING	2	1	3	3			
	DE-ENERGIZ.							
04	ENERGIZING	2	2	4	4			
01	DE-ENERGIZ.					5		
05	ENERGIZING	1	1	2	2			
05	DE-ENERGIZ.	2	2					
66	ENERGIZING	1	1	2	3			
00	DE-ENERGIZ.				4			
10	ENERGIZING	2	1	3	3			
10	DE-ENERGIZ.							
14	ENERGIZING	1	1	3	3			
14	DE-ENERGIZ.					4		
28	ENERGIZING	1	1	3	3			
	DE-ENERGIZ.					4		
23	ENERGIZING	2	1	3	3			
	DE-ENERGIZ.							
		Curve No.						


PRESSURE DROPS FOR INTERNAL CHECK ON P VERSION

Spool type	Connections				
type	P-A	P→B	P→T		
02	1	1	1		
04	1	1	2		
	Curve No.				

The limit of use test has been carried out with external draining and orifice Ø1,5 insert in the P port (Z). The fluid used was a mineral based oil with a viscosity of 46 mm²/s at 40° C.

(*) For the "E mounting" the locating spring works only with the steady system (* Spools with price increasing)

Q (l/min)

Spool type	No. Curve
01	1
02	2
03	1
04	3
05	1
66	1
10	1
14	4
28	4
23	1

SPOOLS AND MOUNTING TYPE

	C mounting	A mounting	B mounting	E mounting (•)	P mounting
Pilot Piloted	AD.3.E.03.C ADH.7.C	AD.3.E.03.E ADH.7.A	AD.3.E.03.F ADH.7.B	AD.3.E.16.E ADH.7.E	AD3E16E/AD3E16F ADH.7.P
Scheme					
Spool type	A X PT Y B				
01					
02					
03					
04*					
05				XHI	MHI
66					
10*					
14*				XHII	MHM
28*					
23*					

PILOT SOLENOID CONTROL VALVE SPECIFICATIONS

FOR DIFFERENT CONTROLS, PLEASE CONTACT OUR TECHNICAL ARON SERVICE

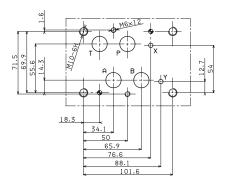
	Max. operating pressure ports P/A/B	350 bar
	Max. operating pressure port T (int. drainage)	160 bar
	Max. operating pressure port T (ext. drainage)	250 bar
	Max. piloting pressure	210 bar
	Min. piloting pressure	12 bar
	Max flow	300 l/min.
	Piloting oil volume for engagement 3 position valves	4 cm ³
	Piloting oil volume for engagement 2 position valves	8 cm ³
	Hydraulic fluid	mineral oil DIN 51524
	Fluid viscosity	2.8 ÷ 380 mm ² /s
	Fluid temperature	-20°C ÷ 70°C
	Ambient temperature	-20°C ÷ 50°C
	Max. contamination level class	10 in accordance with
	NAS	1638 with filter B ₂₅ ≥75
	Weight ADH7 without pilot valve	7̃ Kg
	Weight ADH7 with pilot valve with 1 AC solenoid	8,2 Kg
	Weight ADH7 with pilot valve with 1 DC solenoid	8,4 Kg
	Weight ADH7 with pilot valve with 2 AC solenoids	8,5 Kg
	Weight ADH7 with pilot valve with 2 DC solenoids	9 Kg
-		

Note: the solenoid valve type **ADC.3.E...** (with A09 coil) and **AD3.E...** (with D15 or K12 coils) could be used both as pilote valve, without any changement of technical features.

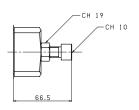
Switching time

Such values refer to a tests carried out with Aron solenoid valve type AD3E03 with P = 100 bar pressure and Q = 100 l/min flow. Orifice $\varnothing 1.5$ mm, insert on piloting port, using a mineral oil at 40° C. with 46 mm²/s viscosity.

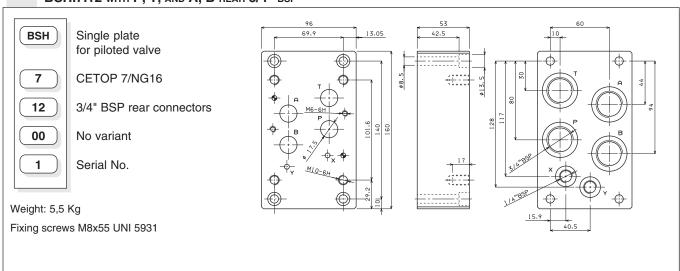
TEMPI DI RISPOSTA VALVOLA PILOTATA


Solenoids	ENERGIZING ±10% (ms)				DE-ENERGIZ	ING ±10%(ms)
No. Spool		01	- 03		01 -	03
Scheme	2 positio	ons	3 p	ositions	2 positions	3 positions
AC	50			20	25	30
DC	70		35		40	50
No. Spool	02	0	14	02 - 04	02 -	· 04
Scheme	2 posit.	2 p	osit.	3 posit.	2 positions	3 positions
AC	35	6	0	30	25	25
DC	55	8	0	40	40	50

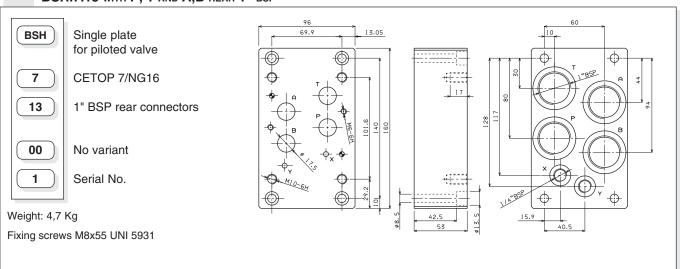
51.7 101.6 51.7

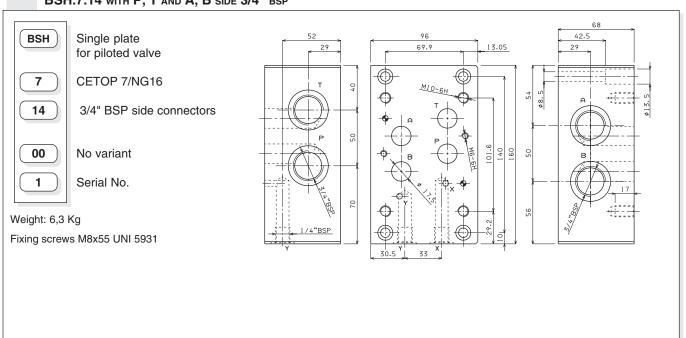

- 1 Piloted solenoid valve type AD3E... or ADC.3.E... CETOP 3/NG6
- 2 Calibrated diaphragms AD3E...
- 3 Flow regulation valve type AM3QF..C
- 4 Pressure reduction valve type AM3RD..C
- 5 Main valve type ADH7..E

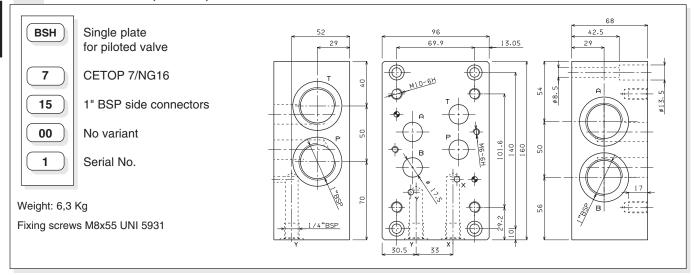
CETOP 7 MOUNTING SURFACE

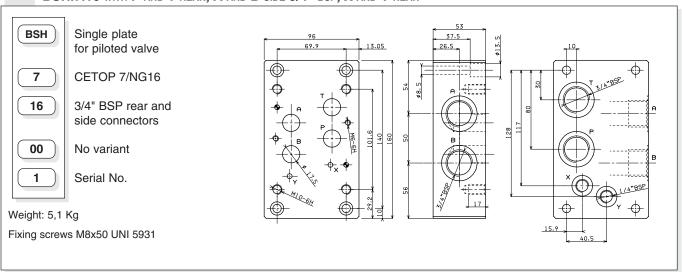


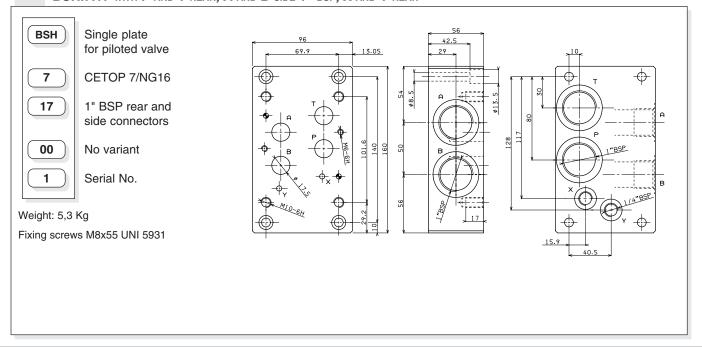
- Piloted valve fixing:
- n° 4 screws T.C.E.I. M10x60 Tightening torque 40 Nm n° 2 screws T.C.E.I. M6x55 - Tightening torque 8 Nm Fixing screws UNI 5931 with material specifications 12.9
- Seals
 - n° 4 OR 2-118 PARKER (type 130) n° 2 OR 2-013 PARKER (type 2043)


SPOOL STROKE ADJUSTMENT


BSH.7.12 WITH P, T, AND A, B REAR 3/4" BSP


BSH.7.13 WITH P, T AND A,B REAR 1" BSP


BSH.7.14 WITH P, T AND A, B SIDE 3/4" BSP


BSH.7.15 WITH P, T AND A, B SIDE 1" BSP

BSH.7.16 WITH P AND T REAR, A AND B SIDE 3/4" BSP, X AND Y REAR

BSH.7.17 WITH P AND T REAR, A AND B SIDE 1" BSP, X AND Y REAR

ADH.8	
STANDARD SPOOLS FOR ADH.8	Ch. I page 58
Tech. specifications ADH.8	Ch. I page 59
SUBPLATES BSH.7	Ch. I page 60
CETOP 3/NG06	Ch. I page 8
STANDARD SPOOLS FOR AD.3.E	Ch. I page 10
AD.3.E	Ch. I page 11
"D15" DC Coils	Ch. I page 18
"K12" AC SOLENOIDS	Ch. I page 18
STANDARD CONNECTORS	Ch. I page 19

ORDERING CODE

ADH

Piloted valve

(Pilot valves and any modulating valves should be ordered separately)

8

CETOP 8/NG25

Mounting type (see next page)

Spool type (see next page)

Piloting and draining I = X internal / Y internal

IE = X internal / Y external

EI = X external / Y internal

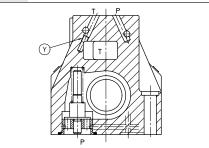
E = X external / Y external (see Tab.1 at side)

R

Check valve incorporated at port P - setting 5 bar (Tab. 2 below) Only for I, IE versions (Omit if not required)

00 = No variant

LC = Main spool stroke limiter


TA = High pressure (•) (Up to 420bar on P/A/B ports)

1

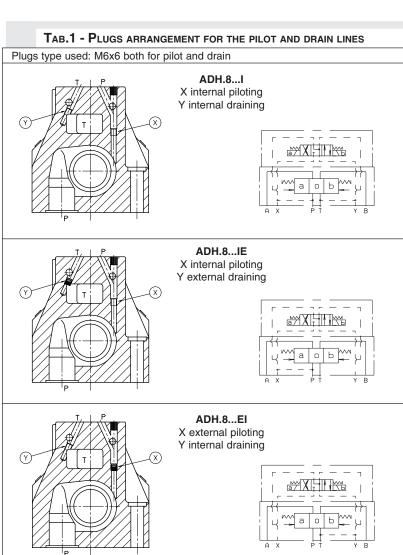
Serial No.

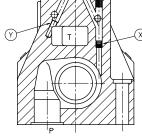
(•) For heavy applications, eg. concrete pumps

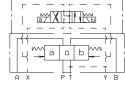
TAB. 2 - INTERNAL CHECK ON P

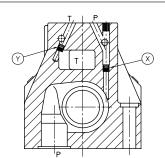
• For the spools 02-04-14-28 the piloting is normally external; the internal piloting is possible with the internal check valve (R).

ADH.8...4/3 AND 4/2 PILOTED VALVES CETOP 8/NG25

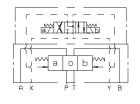

Type ADH.8 distributors are intended for interrupting, inserting and diverting a hydraulics system flow.

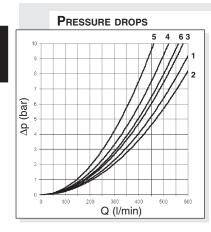

Normally these distributors are composed of a main stage, crossed by circuit main flow, and of a pilot stage available in several versions.


Various types of controls are available, used either individually or in combination for, among other functions, stroke limitation and main spool movement speed control, in order to optimize the hydraulic system operation where this type of valve is employed.


In those cases where normally to drain spools are used, it is necessary to remember that the minimum changeover pressure due to the opposing springs is equal to approximately 5 bar (see the operating features table next pages) and it is consequently necessary to specify when ordering the check valve incorporated in the P line, if required (as shown below).

- Mounting surface in accordance with UNI ISO 4401 08 07 0 94 standard (ex CETOP R 35 H 4.2-4-08).
- Pilot operated spool, solenoid controller.
- Stroke control of main spool.
- Presetting for pressure reducing valve mounting.
- · Presetting for single-acting throttle valve mounting.





ADH.8...E X external piloting Y external draining

The diagram shows the pressure drops in relation to spools adopted for normal usage (see table).

The fluid used was a mineral based oil with a viscosity of 35 mm²/s at 50° C.

Spool		Connections					
type		P→A	Р⊸В	A →T	B→T	P→T	
01	ENERGIZING	1	1	2	3		
02	DE-ENERGIZ. ENERGIZING	2	2	1	2	6(1)	
03	DE-ENERGIZ. ENERGIZING	1	1	4(²) 1	4(³) 2		
04	DE-ENERGIZ. ENERGIZING	6	6	3	4	5	
05	DE-ENERGIZ. ENERGIZING	4(²) 2	4(³) 2	2	3		
66	DE-ENERGIZ. ENERGIZING	1	1	2	4 2		
10	ENERGIZING	1	1	2	3		
14	DE-ENERGIZ. ENERGIZING	6	6	3	4	5(³)	
28	DE-ENERGIZ. ENERGIZING	6	6	4	3	5(2)	
23	DE-ENERGIZ. ENERGIZING	1	4 2	2	3		
	Curve No.						

Notes: (1) A/B stopped - (2) B stopped - (3) A stopped

SPOOLS AND MOUNTING TYPE

(* Spools with price increasing)

(•) For the E mounting the locating spring works only with the steady system

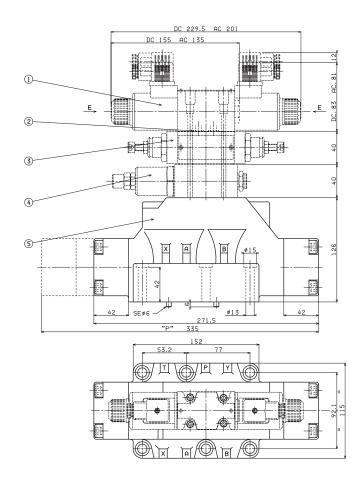
	C mounting	A mounting	B mounting	E mounting	P mounting		
Pilot Piloted	AD.3.E.03.C ADH.8.C	AD.3.E.03.E ADH.8.A	AD.3.E.03.F ADH.8.B	AD.3.E.16.E ADH.8.E	AD3E16E/AD3E16F ADH.8.P		
Scheme Spool	A X PT Y B						
01							
02				XHI	XIHIV		
03					XITI		
04*							
05		MAR		XHI	XHI		
66							
10*			T T V V				
14*				XHI	XIGII		
28*					X		
23*			T T K-X N				

PILOT SOLENOID CONTROL VALVE SPECIFICATIONS

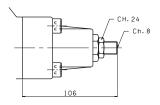
FOR DIFFERENT CONTROLS, PLEASE CONTACT OUR TECHNICAL ARON SERVICE

Max. operating pressure ports P/A/B	320 bar
Max. operating pressure port T (int. drainage) Max. operating pressure port T (ext. drainage)	160 bar 250 bar
Max. piloting pressure	210 bar
Min. piloting pressure	5 bar
Max. flow with 04-14-28 spools	500 l/min a 210 bar
	450 l/min a 320 bar
Max. flow with all other spools	600 l/min a 210 bar
·	500 l/min a 320 bar
Piloting oil volume for engagement 3 position valves	11.1 cm ³
Piloting oil volume for engagement 2 position valves	22.12 cm ³
Hydraulic fluid	mineral oil DIN 51524
Fluid viscosity	2.8 ÷ 380 mm ² /s
Fluid temperature	-20°C ÷ 70°C
Ambient temperature	-20°C ÷ 50°C
	10 in accordance with
	1638 with filter B ₂₅ ≥75
Weight ADH8 without pilot valve Weight ADH8 with pilot valve with 1 AC solenoid	13,1 Kg 14,3 Kg
Weight ADH8 with pilot valve with 1 DC solenoid	14,5 Kg 14,5 Kg
Weight ADH8 with pilot valve with 2 AC solenoids	14,5 Kg
Weight ADH8 with pilot valve with 2 DC solenoids	15,1 Kg
Trong. Trong. Trong. Transcription William E Bo dollarioldo	10,1119

Switching time

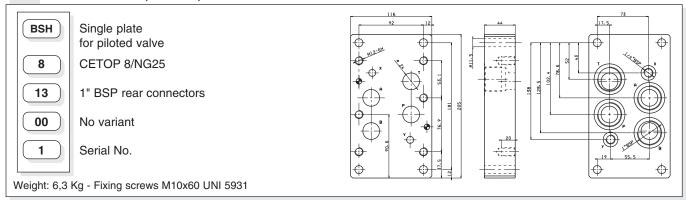

Such values refer to a solenoid valve with P = 100 bar pressure using a mineral oil at 50° C with 36 mm²/sec viscosity PA and BT connections.

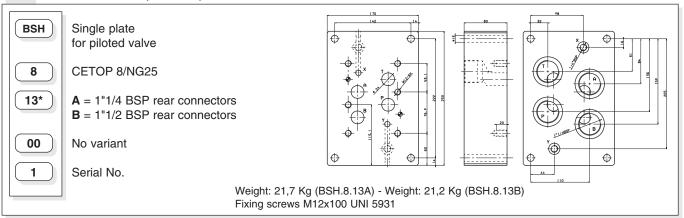
SWITCHING TIMES PILOTED VALVE


	ENERGIZINO	G ±10% (ms)	DE-ENERGIZING	G ±10% (ms)
Solenoids	2 posit.	3 posit.	2 posit.	3 posit.
AC	60	45	90	60
DC	75	55	90	60

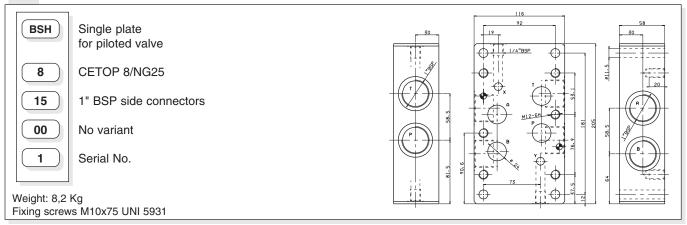
OVERALL DIMENSIONS

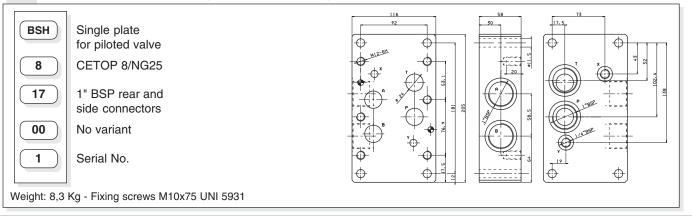
CETOP 8 MOUNTING SURFACE


- - Piloted valve fixing: n° 6 screws T.C.E.I. M12x60
 - Tightening torque: 69 Nm
 - Seals: n° 4 OR 2-123 PARKER (type 3118) n° 2 OR 2-117 PARKER (type 3081)


SPOOL STROKE ADJUSTMENT

- 1 Piloted solenoid valve type AD3E... CETOP 3/NG6
- 2 Calibrated diaphragms AD3E...
- 3 Flow regulation valve type AM3QF..C
- 4 Pressure reduction valve type AM3RD..C
- 5 Main valve type ADH7..E


BSH.8.13 WITH P, T AND A, B REAR 1" BSP


BSH.8.13* WITH P, T AND A, B REAR 1"1/4 BSP OR 1" 1/2 BSP

BSH.8.15 WITH T, P AND A, B SIDE 1" BSP

BSH.8.17 WITH P AND T REAR, A AND B SIDE 1" BSP, X AND Y REAR

CDL.04.6...

"A09" DC Coils	Ch. I Page 67
CONNECTORS STANDARD	Ch. I Page 19

ORDERING CODE

CDL Stackable circuit selector valve 04 Size NG04 6 No. of way (single element) W Threaded connectors 1/4" BSP Internal drainage I No. of elements: 1/2/3/4 Voltage (Tab. 1) ** Variants (Tab. 2) 1 Serial No.

(*) P1 Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

CDL.04.6... STACKABLE CIRCUIT SELECTOR VALVES

The stackable circuit selector valves, type CDL.04.6, allows one single drive of 5 users with 4 elements connected in series.

As they are moved from high performances solenoids they don't need the external drainage.

Additionally, beyond having a reduced and compact dimensions, they can manage high hydraulic powers with a minimal pressure drop.

Max. pressure 250 bar Max. flow 20 l/min Overlap positive Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance

Weight see "Overall dimension"

NAS with 1638 with filter B_{as}≥75

HYDRAULIC SYMBOLS

TAB.1 - A09 (27 W) COIL

		(
	DC vo	LTAGE		
M N	12V 24V 48V*	115Vac/50Hz 120Vac/60Hz with rectifier		
P Z X W	110V* 102V*← 205V*← Without DC	230Vac/50Hz 240Vac/60Hz with rectifier		
Voltage codes are not stamped on the plate, their are readable on the coils. * Special voltage				

- The AMP Junior coil and with the flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.
- The Deutsch coil with bidirectional diode is available in 12V DC voltage only.

TAB. 2 - VARIANTI

VARIANTE	CODE
No variant	00
Viton	V1
Pilot light	X1
Rectifier	R1
Solenoid valve without connectors	S1
Cable gland "PG 11"	C1
Viton + Pilot light	VX
Viton + Rectifier	VR
Pilot light + Rectifier	XR
Rotary emergency button	P1(*)
Emergency button	E1
AMP Junior connection	AJ
Bobina con fili (250 mm)	FL
with flying leads (130 mm) and integr. diode	e LD
Deutsch connection with bidir. diode	CX
Other variants relate to a special design.	

SINGLE ELEMENT

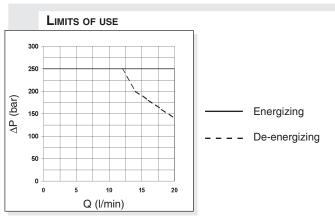
C1 C4 C2 C3

P1 P2

MULTI STATION CONNECTION

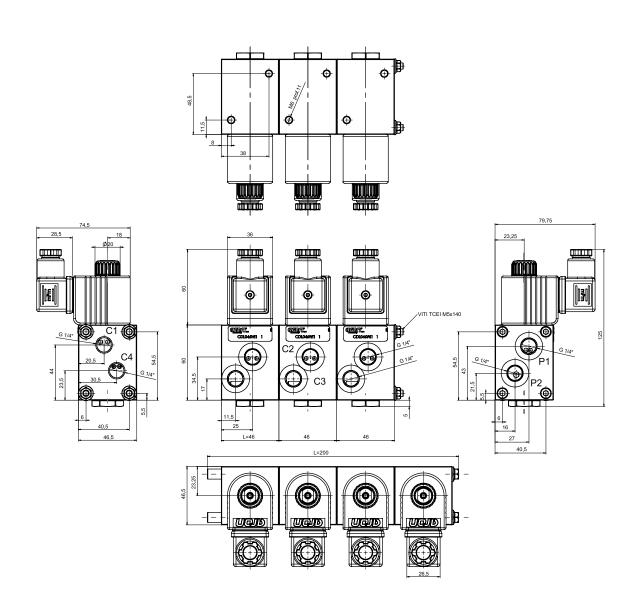
C1 C4

C2 C3

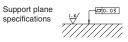

C1 C4

C2 C3

C1 C4


C2 C3

The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 50 $^{\circ}$. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40 degrees C.


OVERALL DIMENSIONS

Fixing screws with material specifications min. 8.8 Tighten the screws to a torque of 5 Nm (0.5 Kgm)

No. of elements	No. of way	L (Length)	Weight (Kg)	Fixing screws	Kit spare part code* (rods and studs)
1	06	46	1,05	-	/
2	08	100	2,20	TCEI M5x95	V89.54.0020
3	10	145	3,30	TCEI M5x140	V89.54.0021
4	12	200	4,45	TCEI M5x194 (special rods)	V89.54.0022

(*) For multiple composition rods and studs are available.

					_	_	_	=
\sim	П		n	c	9.7	c		
	u	ь.	u	O	ш	O	1	

"40W" DC Coils	Ch. I Page 68
CONNECTORS STANDARD	CH. I PAGE 19

ORDERING CODE

CDL

Stackable circuit selector valve

06

Size NG06

6

No. of way (single element)

W

Threaded connectors 3/8" BSP

ı

Internal drainage

No. of elements: 1/2/3/4/5

Voltage (Tab. 1) Variants (Tab. 2)

** 1

Serial No.

CDL.06.6... STACKABLE CIRCUIT SELECTOR VALVES

The stackable circuit selector valves, type CDL.06.6, allows one single drive of 6 users with 5 elements connected

As they are moved from high performances solenoids they don't need the external drainage.

This valves can manage high hydraulic powers with a minimal pressure drop.

Max. pressure 250 bar Max. flow 50 l/min Overlap negative Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$

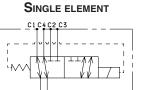
Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance

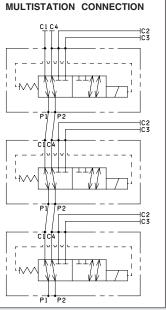
NAS with 1638 with filter B₂₅≥75 see "Overall dimension" Weight

Tab.1 - 40W Coil

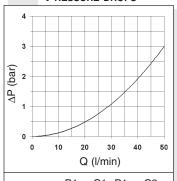
DC VOLTAGE

12V M 24V


W Without DC coil

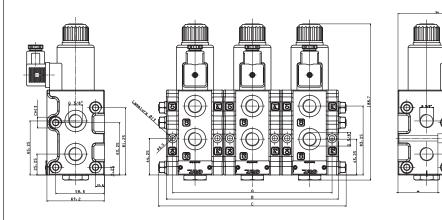

Voltage codes are not stamped on the plate, their are readable on the coils.

Tab.2 - Variants


No variant	00
(connectors as in the drawing)	
Viton	V1
Pilot light	X1
Rectifier	R1
Valve without connector (coil)	S1
Viton + Pilot light	VX
Viton + Rectifier	VR
Pilot light + Rectifier	XR
Emergency button	E1
Rotary emergency button	P1
Raccordements Deutsch DT04-2P	CZ

HYDRAULIC SYMBOLS

PRESSURE DROPS



 $P1 \rightarrow C1, P1 \rightarrow C2,$ P2 \rightarrow C3 et P2 \rightarrow C4

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C.

Fixing screws UNI 5931 M6x60 with material specifications min. 8.8 Tightening torque for studs 8 Nm / 0.8 Kgm Tightening torque for rods 20 Nm / 2 Kgm

OVERALL DIMENSIONS

No. of	No. of	Α	В	С	Weight	Kit spare part code*
elements	way	Lengths (mi		m)	(Kg)	(rods and studs)
1	06	54	69	-	3	/
2	08	123	138	160	6,3	V89.56.0001
3	10	192	207	226	9,3	V89.56.0002
4	12	261	276	296	12,3	V89.56.0003
5	14	330	345	365	25,3	V89.56.0004

(*) For multiple composition rods and studs are available.

ADL06.6	
"D15" DC Coils	Ch. I page 67
STANDARD CONNECTORS	Ch. I page 19

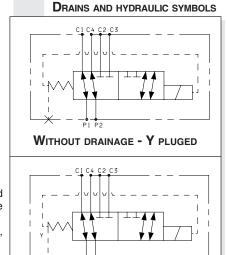
ADL06.6... FLOW DIVERSION VALVES

The 6 way flow diversion valves are special solenoid valves which allow the simultaneous connection of two systems.

In order to obtain valve's working at pressure of 250 bar up to 320 bar (exeternal drainge) the G 1/8" BSP plug must be removed to Y connector.

Max. pressure (without drainage, Y pluged) 250 bar 320 bar Max. pressure (external drainage) 40 l/min Max. flow Overlap negative Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ Weight 2,4 Kg

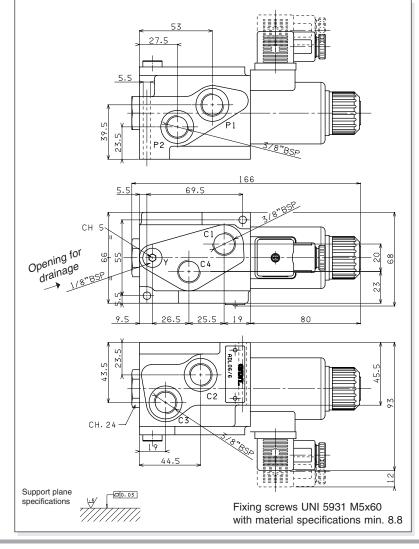
ORDERING CODE

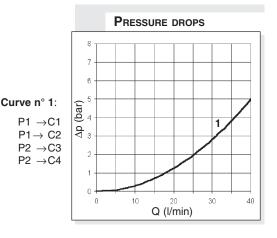

ADL06
Flow diversion valves NG6
No. of way
Threaded connectors 3/8"BSP
Without drainage Y connector pluged

* Voltage (see table 1)

** Variants (see table 2)
Serial No.

TAB.2 - VOLTAGE D15 Coil (30W) 12V M 24V 115Vac/50Hz ٧ 28V* 120Vac/60Hz with rectifier Ν 48V* 102V* Z 230Vac/50Hz Р 110V* 240Vac/60Hz with rectifier 205V* w Without DC coils and connectors Voltage codes are not stamped on the plate, their are readable on the coils. * Special voltage


- AMP Junior (with or without diode) and Deutsch and with flying leads coils, are available in 12V or 24V DC voltage only.
- Plastic type coils are available in 12V, 24V, 28V or 110V DC voltage only.



EXTERNAL DRAINAGE

Tab.2 - Variants

No variant (connectors as in the drawing)	00
Viton	V1
Pilot light	X1
Rectifier	R1
Flow diversion without connector (coil)	S1
Emergency button	E1
Rotary emergency button	P1
Viton + Pilot light	VX
Viton + Rectifier	VR
Pilot light + Rectifier	XR
AMP Junior coil	AJ
AMP Junior coil and integrated diode	AD
Coil with flyning leads (175mm)	SL
Deutsch DT04-2P Coil type	CZ
Plastic type coil	BR

CDL.	10.	6

"A16" DC Coils	CH. I PAGE 68
CONNECTORS STANDARD	Ch. I Page 19

ORDERING CODE

CDL

Stackable circuit selector valve

10

Size NG10

6

No. of way (single element)

W

Threaded connectors 1/2" BSP

ı

Internal drainage

No. of elements: 1/2/3/4/5

Voltage (Tab. 1)

**

Variants (Tab. 2)

1

Serial No.

CDL.10.6... STACKABLE CIRCUIT SELECTOR VALVES

The stackable circuit selector valves, type CDL. 10.6, allows one single drive

of 6 users with 5 elements connected

As they are moved from high performances solenoids they don't need the external drainage.

This valves can manage high hydraulic powers with a minimal pressure drop.

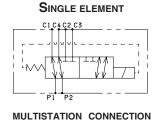
OFF-HIGHWA MACHINERY

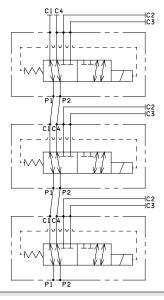
Max. pressure 250 bar Max. flow 80 l/min Overlap negative Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$

Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance

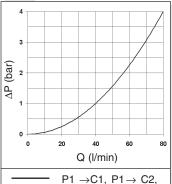
NAS with 1638 with filter B₂₅375

see "Overall dimension" Weight


TAB.1 - A16 COIL

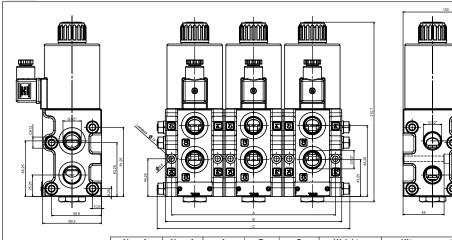

DC VOLTAGE 12V 115Vac/50Hz M 24V 120Vac/60Hz with rectifier Ν 48V* Р 110V* 230Vac/50Hz Z 102V* 240Vac/60Hz X with rectifier 205V*◆ W Without DC coil Voltage codes are not stamped on the plate, their are readable on the coils. * Special voltage

Tab.2 - Variants


00
V1
X1
R1
S1
VX
VR
XR
E1
P1

HYDRAULIC SYMBOLS

PRESSURE DROPS



P2 \rightarrow C3 et P2 \rightarrow C4 The fluid used is a mineral oil with

a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C.

Fixing screws UNI 5931 M6x60 with material specifications min. 8.8 Tightening torque for studs 8 Nm / 0.8 Kgm Tightening torque for rods 20 Nm / 2 Kgm

OVERALL DIMENSIONS

No. of	No. of	A	В	С	Weight	Kit spare part code*
elements	way	Lengths (mm)			(Kg)	(rods and studs)
1	06	54	69	-	4,5	/
2	08	123	138	160	9,3	V89.56.0001
3	10	192	207	226	14	V89.56.0002
4	12	261	276	296	18,5	V89.56.0003
5	14	330	345	365	23,3	V89.56.0004

(*) For multiple composition rods and studs are available.

00

ADL10.6	
"A16" DC Coils	Ch. I page 68
STANDARD CONNECTORS	Ch. I page 19

ORDERING CODE

ADL10

Flow diversion valves NG10

6 No. of way

Connectors 3/4"BSP

J

Without drainage Y connector plugged

*

Voltage (see table 1)
Variants (see table 2)

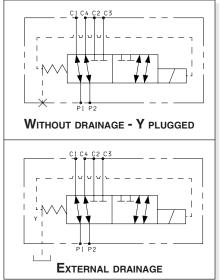
1 Serial No.

ADL10.6... FLOW DIVERSION VALVES

The 6 way flow diversion valves are special solenoid valves which allow the simultaneous connection of two systems.

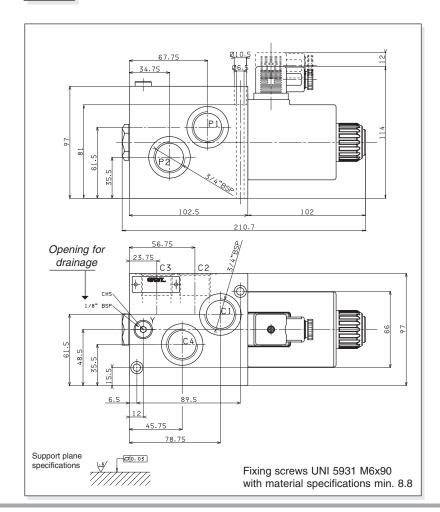
In order to obtain valve's working at pressure of 250 bar up to 320 bar (external drainage) the G 1/8" BSP plug must be removed to Y connector.

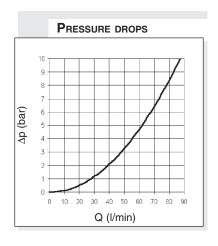
Max. pressure (without drainage, Y plugged) 250 bar Max. pressure (external drainage) 320 bar Max. flow 80 l/min Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ 3,6 Kg Weight


TAB.1 - A16 COIL DC VOLTAGE

	DC vo	DLTAGE
L	12V	115Vac/50Hz
M	24V 48V*	120Vac/60Hz with rectifier
Р	110V*	230Vac/50Hz
Z	102V* ←	→ 240Vac/60Hz
X	205V* ←	with rectifier
W	Without DC	coil
1/0140		atamanad an the plate

Voltage codes are not stamped on the plate, their are readable on the coils.

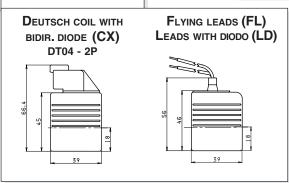

* Special voltage

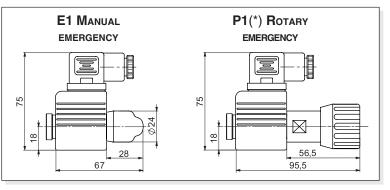

DRAINS AND HYDRAULIC SYMBOLS

TAB.2 - VARIANTS

VARIANT	CODE
No variant (connectors as in the drawing)	00
Viton	V1
Pilot light	X1
Rectifier	R1
Flow diversion without connector (coil)	S1
Viton + Pilot light	VX
Viton + Rectifier	VR
Pilot light + Rectifier	XR
Emergency button	E1
Rotary emergency button	P1

"A09" DC coils for CDL.04...




Type of protection	
(in relation to connector used)	IP 65
Number of cycle	18.000/h
Supply tolerance	±10%
Ambient temperature	-30°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	Н
Weight	0,215 Kg

- The AMP Junior coil and with the flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.
- The Deutsch coil with bidirectional diode is available in 12V DC voltage only.

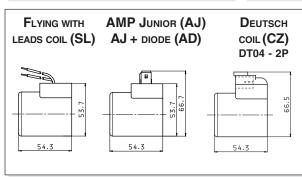
AMP JUNIOR (AJ)		
G G G G G G G G G G G G G G G G G G G		

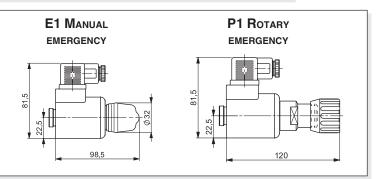
Voltage (V)	Max winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±7%
12V	123°C	27	5.3
24V	123°C	27	21.3
48V*	123°C	27	85.3
102V*	123°C	27	392
110V*	123°C	27	448
205V*	123°C	27	1577
* Special volta	ages	ETA09/AD2-CDL04-C3V - 04/2001/e	

(*) P1 Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

• Emergency, plastic coil, and Amp Junior, leads or deutch coils, are not available for A66 valve.

"D15" DC coils for ADL06... and A.66...

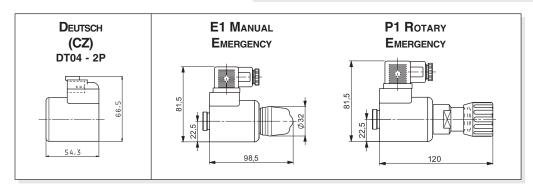

66.. **() (1707)**


IP 66
18.000/h
±10%
-54°C ÷ 60°C
100% ED
Н
0,354 Kg

- AMP Junior coils (with or without diode) and coils with flying leads and coils type Deutsch, are available in 12V or 24V DC voltage only.
- The pastic type coil (BR variant) is available in 12V, 24V, 28V or 110V DC voltage only.

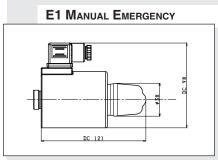
PLASTIC COIL (BR)
9999 9999 57,9

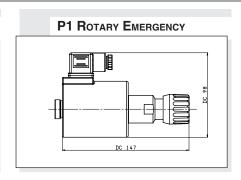
	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	110°C	30	4.8
24V	110°C	30	18.8
28V*	110°C	30	25.6
48V*	110°C	30	75.2
102V*	110°C	30	340
110V*	110°C	30	387
205V*	110°C	30	1375
(*) Special voltages		ETD15/ADL06-A66 - 04/2001/e	



"40W" DC coils for CDL06...

Type of protection	
(in relation to the connector used)	IP 66
Number of cycles	18.000/h
Supply tolerance	+10% / -10%
Ambient temperature	-54°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	Н
Weight	0,354 Kg


VOLTAGE (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	135°C	40	3.6
24V	135°C	40	14.4
			IT40W - 02/2004/e



"A16" DC coils for ADL10 and CDL10

Type of protection (in relation to the connector used)
Number of cycles
Supply tolerance
Ambient temperature
Duty cycle
Insulation class wire
Weight

IP 65 18.000/h ±10% -30°C ÷ 60°C 100% ED H 0,9 Kg

Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±7%
12V	106°C	45	3.2
24V	113°C	45	12,4
48V*	-	45	-
102V*	-	45	-
110V*	118°C	45	268
205V*	-	45	=
(*) Special vol	tage		ETA16 - 03/2002/e

TECHNICAL CATALOGUE ARON 2010

ABBREVIATIONS

AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	LOW PRESSURE CONNECTION
С	STROKE (MM)
CH	ACROSS FLATS
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I%	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
P	LOAD PRESSURE (BAR)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	Pump flow (L/MIN)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

www.aron.it - sales@brevinifluidpower.com

General terms and conditions of sale: see website www.aron.it

SUBPLATE MOUNTING PRESSURE CONTROL VALVES

() aron

PV*.3 / PV*.U.3	
	Ch. II page 2
PV*.5 / PV*.U.5	
	Ch. II page 4

SUBPLATE MOUNTING PRESSURE CONTROL VALVES

V.*.P	
	Ch. II page 6
V.*.L	
	Ch. II page 6
BS.VMP P	
	Ch. II page 11

File: 02TA E II • 1 02/2010/e

PVR.3 / PVS.3...

PV*.3 / PV*.U.3 PRESSURE REDUCING AND SEQUENCING VALVES CETOP 3/NG6

() aron

These subplate mounting piloted type pressure reducing and sequencing valves ensure a minimum variation in their calibrated pressure value with changing flow rate.

They are normally supplied with internal piloting and internal drainage on B, but they are already provided with a hole on the front cover to allow for external drainage.

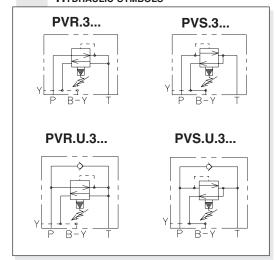
They are available with two different types of adjustment and three calibrated ranges that cover pressure 7 ÷ 250 bar, with and without check valve.

The adjustment is carried out by means of a grub screw or a metric plastic knob.

Max. pressure 320 bar
Setting ranges Spring 1 max. 60 bar
Spring 2 max. 120 bar
Spring 3 max. 250 bar

Maximum allowed Δp pressure between the inlet and outlet pressure (PVR only) 150 bar

Max. flow 40 l/min
Draining on port T 0.5 \div 0.7 l/min
Hydraulic fluids Mineral oils DIN 51524
Fluid viscosity 10 \div 500 mm²/s
Fluid temperature -25°C \div 75°C


Ambient temperature -25°C ÷ 60°C Max. contamination lever class 10 in accordance with NAS 1638 with filter β₂₅≥75

Weight (without check valve)

1,5 Kg
Weight (with check valve)

2 Kg

HYDRAULIC SYMBOLS

ORDERING CODE

PV*

R = Reducing valveS = Sequencing valve

U

Check valve (omit if not required)

3

CETOP 3/NG6

*

Type of adjustment:

M = Plastic knob

C = Grub screw

*

Setting ranges

1 = max. 60 bar (white spring) 2 = max. 120 bar (yellow spring) 3 = max. 250 bar (green spring)

**

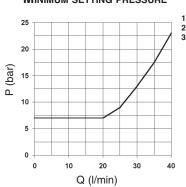
1

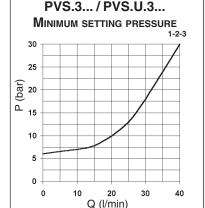
00 = No variant **V1** = Viton

Serial No.

DIAGRAMS

PVR.3... / PVR.U.3... PRESSURE - FLOW RATE 200 100 Q (I/min) 201 202 402 Q (I/min)


200 (leg of the leg of

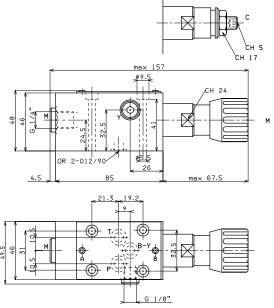

PVS.3... / PVS.U.3...

PRESSURE - FLOW RATE

300

PVR.3... / PVR.U.3... MINIMUM SETTING PRESSURE

Curves n° 1 - 2 - 3 = setting ranges

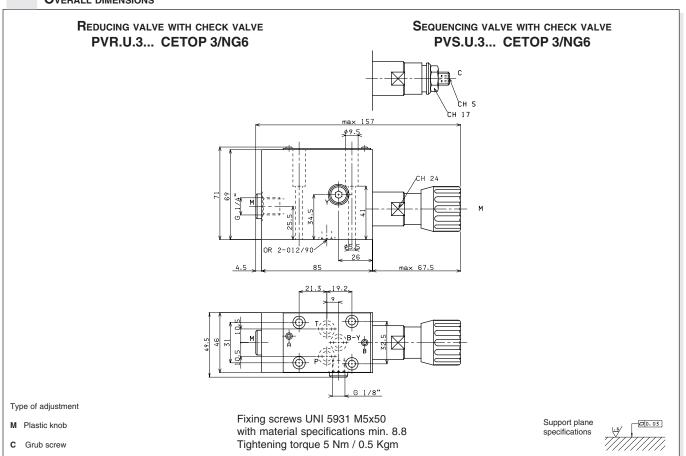

The fluid used is a mineral oil with viscosity of 46 mm²/s at 40°C. The tests were carried out at a fluid temperature of 50°C.

OVERALL DIMENSIONS

REDUCING VALVE PVR.3... CETOP 3/NG6

SEQUENCING VALVE PVS.3... CETOP 3/NG6

Type of adjustment


- M Plastic knob
- C Grub screw

Fixing screws UNI 5931 M5x50 with material specifications min. 8.8 Tightening torque 5 Nm / 0.5 Kgm

Support plane specifications

OVERALL DIMENSIONS

PVR.5 / PVS.5...

PV*.5 / PV*.U.5 PRESSURE REDUCING AND SEQUENCING VALVES CETOP 5/NG10

() aron

These subplate mounting piloted type pressure reducing and sequencing valves ensure a minimum variation in their calibrated pressure value with changing flow rate.

They are normally supplied with internal piloting and internal drainage on B, but they are already provided with a hole on the front cover to allow for external drainage.

They are available with two different types of adjustment and three calibrated ranges that cover pressure 7 ÷ 250 bar, with and without check valve.

The adjustment is carried out by means of a grub screw or a metric plastic knoh

Max. pressure

Setting ranges

Spring 1

Spring 2

Spring 2

Spring 3

Max. 120 bar

Spring 3

Max. 250 bar

Maximum allowed Δp pressure between

the inlet and outlet pressure (PVR only) 150 bar Max. flow 90 l/min Draining on port T 0.5 \div 0.7 l/min Hydraulic fluids Mineral oils DIN 51524

Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature $-25^{\circ}\text{C} \div 75^{\circ}\text{C}$ Ambient temperature $-25^{\circ}\text{C} \div 60^{\circ}\text{C}$

Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{os} \ge 75$

Weight (without check valve) 3,8 Kg Weight (reducing valve with check valve) 4,2 Kg Weight (sequencing valve with check valve) 4,5 Kg

ORDERING CODE

PV*

R = Reducing valveS = Sequencing valve

U

Check valve (omit if not required)

5

CETOP 5/NG10

*

Type of adjustment:

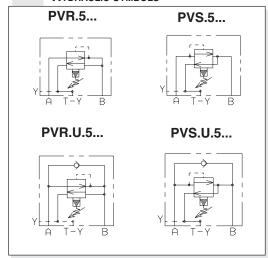
M = Plastic knob **C** = Grub screw

*

Setting ranges

1 = max. 60 bar (white spring) 2 = max. 120 bar (yellow spring)

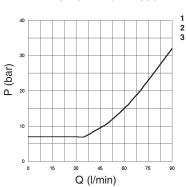
3 = max. 250 bar (green spring)


**

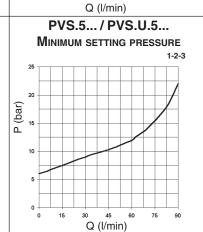
00 = No variant **V1** = Viton

1

Serial No.

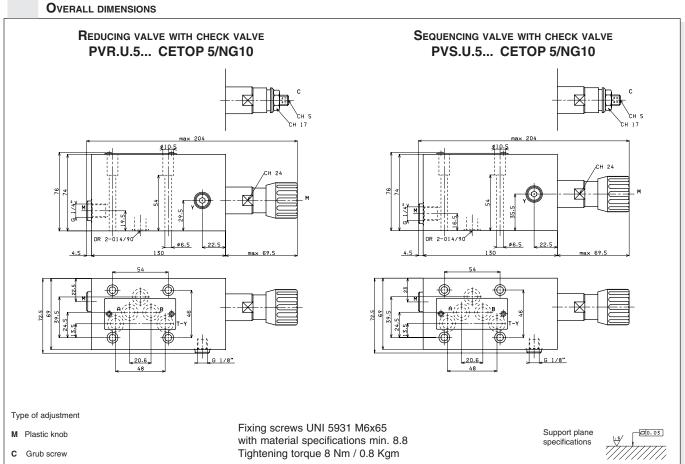

HYDRAULIC SYMBOLS

DIAGRAMS



PVR.5... / PVR.U.5... MINIMUM SETTING PRESSURE

PVS.5... / PVS.U.5...


Curves n° 1 - 2 - 3 = setting ranges

The fluid used is a mineral oil with viscosity of $46\,\mathrm{mm^2/s}$ a $40^\circ\mathrm{C}$. The tests were carried out at a fluid temperature of $50^\circ\mathrm{C}$.

OVERALL DIMENSIONS

REDUCING VALVE SEQUENCING VALVE PVR.5... CETOP 5/NG10 PVS.5... CETOP 5/NG10 G 1/8" 20.6 G 1/8" Type of adjustment Fixing screws UNI 5931 M6x65 Support plane specifications 0.03 M Plastic knob with material specifications min. 8.8 Tightening torque 8 Nm / 0.8 Kgm C Grub screw

V.*.P / V.*.L		
V.*.P	Ch. II page 7	
V.*.P.E	Ch. II page 8	
V.*.L	Ch. II page 9/10	
BS.VMP	Ch. II page 11	
KEC.16/25	Ch. V page 9	
C*P.16/25	Ch. V page 9	
CETOP 3/NG06	Ch. I page 8	
STANDARD SPOOLS FOR AD.3.E	Ch. I page 10	
AD.3.E	Ch. I page 11	
AM.3.VM	Ch. IV page 9	

ORDERING CODE

٧

2

Valve

M = maximum pressure

S = sequence

U = exclusion (areas rep. 1,15 : 1)

P = Plate mounting

L = In line mounting

E = Presetting for solenoid valve Not for sequencing valve V.S.P... (omit if not required)

Size (see overall dimensions)

16 - 25 = NG16 or NG25

161 - 251 = for V.*.L... only

(in line mounting valve)

Type of adjustment:

M = Plastic knob

C = Grub screw

Setting ranges

 $1 = 15 \div 45$ bar (white spring)

 $2 = 15 \div 145$ bar (yellow spring)

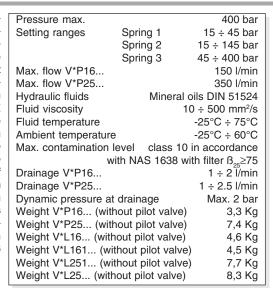
 $3 = 45 \div 400$ bar (green spring)

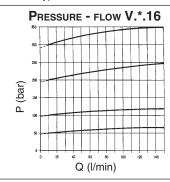
** 00 = No variant

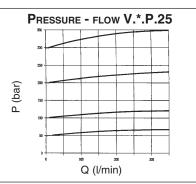
V1 = Viton

AC = Exclusion valve for accumulators (only for VU*.**)

AQ = Presetting for XP3

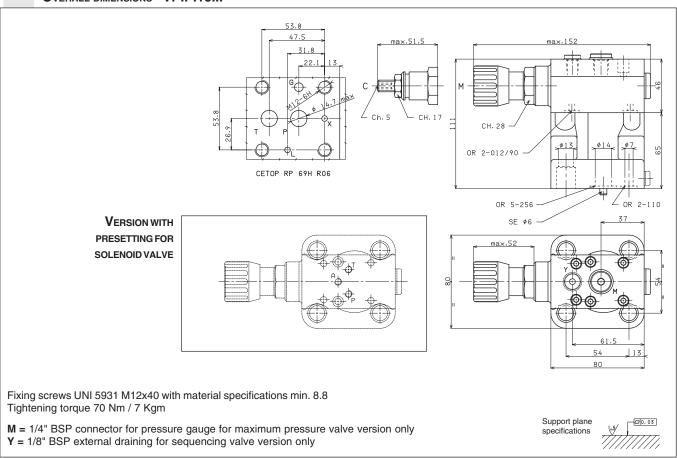

Serial No.

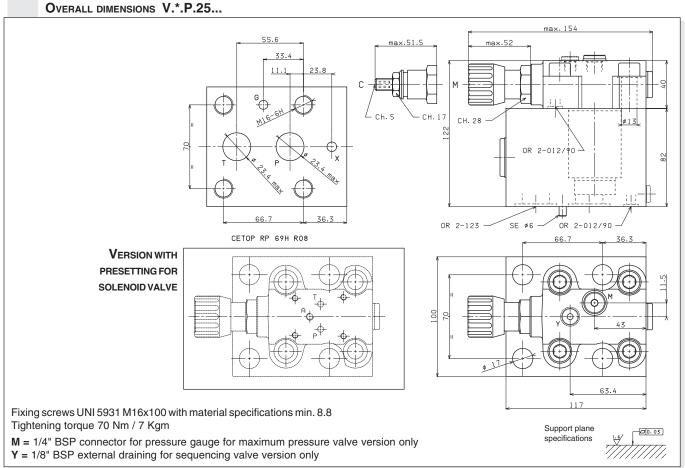

V.*.P Pressure control valves plate V.*.L Pressure control valves in line



These pressure control valves are available in the basic VMP* maximum pressure, VSP* sequence and VUP* exclusion versions, with a single pressure value and three calibration ranges that cover the band 15 ÷ 400 bar. It is possible to use auxiliary pilot valves, which can be the simple standard AD3E solenoid valve, by the mere exchange of covers. These valves have been fitted with an important safety feature for the operation of the system where they are used; a mechanical end of stroke stop prevents the operator from setting pressure values higher than those specified in the catalogue (it is impossible to compress the spring completely). In the standard configuration these valves are supplied with a 1.6 bar main spring and with calibrated ø1 mm pilot feed orifice (Variant part No. 00).

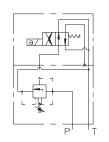
Subplate mounting valves are suitable for covers which do not conform to DIN standards type C*P16/25.. whilst in line mounting valves are suitable for DIN standards covers type KEC16/25...

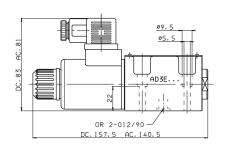



The fluid used is a mineral oil with viscosity of 46 mm²/s at 40°C. The tests were carried out at a fluid temperature 40°C.

Hydraulic symbols			
V.M.P.16.** V.M.P.25.** Maximum pressure valve Internal piloting and draining	P	P P T T T	
V.S.P.16.** V.S.P.25.** Sequencing valve Internal piloting External draining	Y' P T	F - H	
V.U.P.16.** V.U.P.25.** Exclusion valve External piloting Internal draining	XTPT	X-	

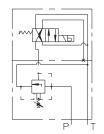
OVERALL DIMENSIONS V.*.P.16...

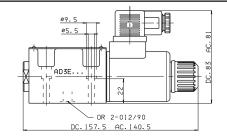



MOUNTING TYPE V.*.P.E...

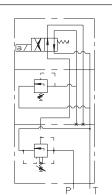
V.*.P.E... + AD.3.E.15.E... or AD.3.E.16.E...

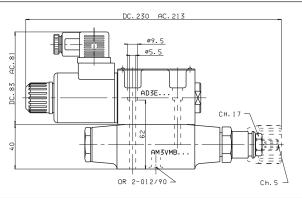
- Solenoid de-energized, pump to tank.
 Solenoid energized, circuit pressure control
- 2) Solenoid energized, circuit pressure controlled by valve on cover.


For mounting valves to have normally discharged configuration it is necessary to use an AD.3.E.15.F.. or AD.3.E.16.F... type solenoid valve, whilst for subplate mounting valves it is necessary to use type AD.3.E.15.E.. or AD.3.E.16.E.

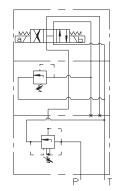


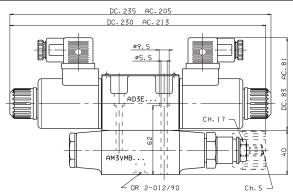
V.*.P.E... + AD.3.E.15.F... or AD.3.E.16.F...


- 1) Solenoid de-energized, pump pressure controlled by valve on cover.
- 2) Solenoid B energized, pump to tank.

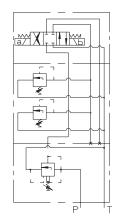


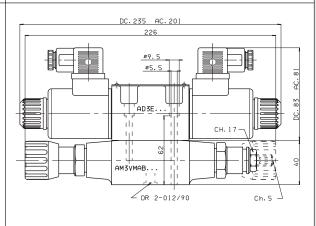
V.*.P.E... + AM.3.VM.B... + AD.3.E.15.E... or AD.3.16.E...


- 1) Solenoid de-energized, pump pressure controlled by valve on cover.
- 2) Solenoid energized, pump pressure controlled by valve AM.3.VM.B. $\label{eq:controlled}$

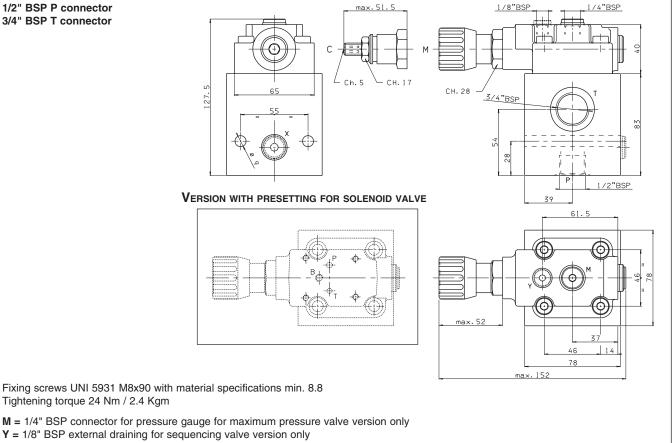


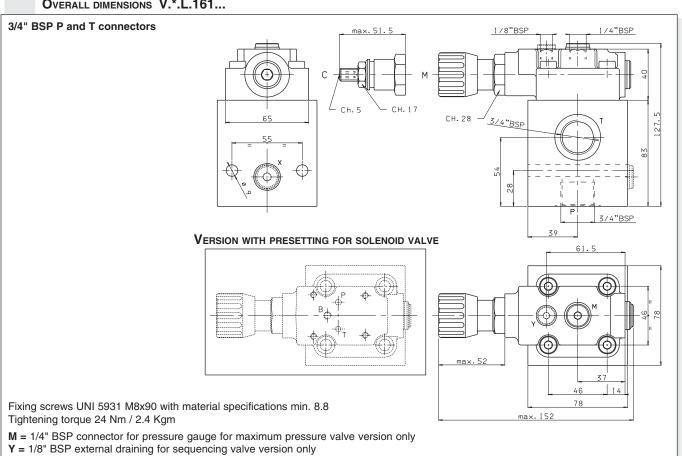
V.*.P.E... + AM.3.VM.B... + AD.3.E.02.C...


- 1) Solenoid de-energized, pump to tank.
- 2) Solenoid A energized, pump pressure controlled by valve AM.3.VM.B.
- 3) Solenoid B energized, pump pressure controlled by valve on cover.

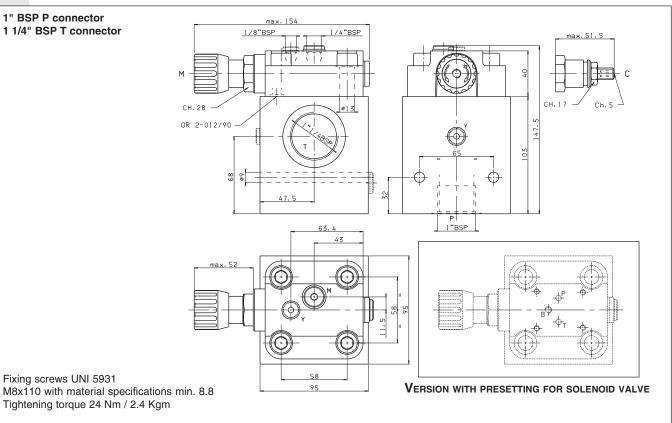


V.*.P.E... + AM.3.VM.B... + AD.3.E.01.C...


- 1) Solenoid de-energized, pump pressure controlled by valve on cover.
- 2) Solenoid A energized, pump pressure controlled by valve AM.3.VM.AB.
- 3) Solenoid B energized, pump pressure controlled by valve AM.3.VM.AB.

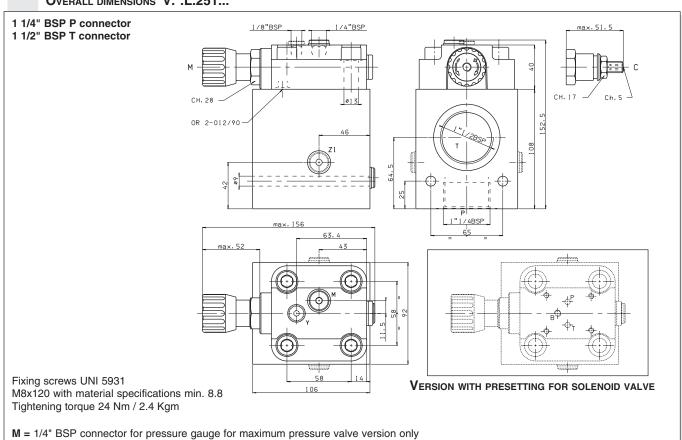


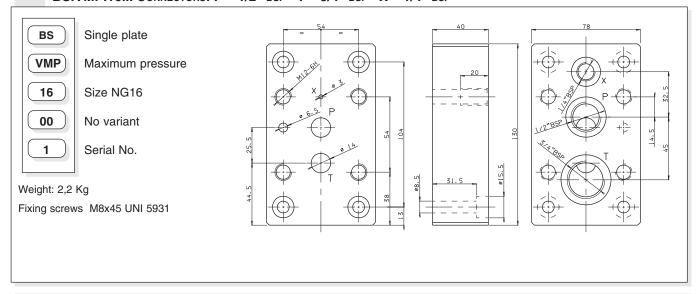
OVERALL DIMENSIONS V.*.L.16...



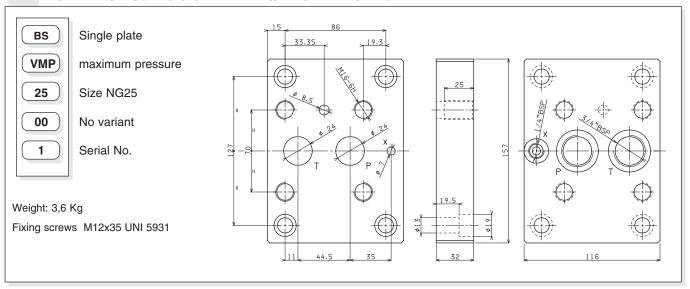
OVERALL DIMENSIONS V.*.L.161...

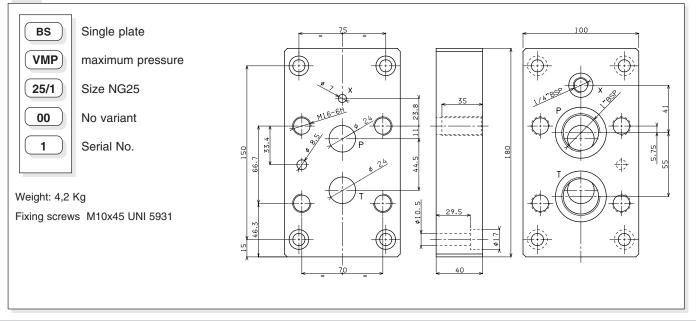
OVERALL DIMENSIONS V.*.L.25...


1" BSP P connector 1 1/4" BSP T connector


 $\bf M$ = 1/4" BSP connector for pressure gauge for maximum pressure valve version only $\bf Y$ = 1/8" BSP external draining for sequencing valve version only

OVERALL DIMENSIONS V.*.L.251...


Y = 1/8" BSP external draining for sequencing valve version only


BS.VMP.16... CONNECTORS: P = 1/2" BSP - T = 3/4" BSP - X = 1/4" BSP

BS.VMP.25... Connectors: P and T = 3/4" BSP - X = 1/4" BSP

BS.VMP.25/1... Connectors: P and T = 1" BSP - X = 1/4" BSP

TECHNICAL FLOW CONTROL CATALOGUE **ARON 2010**

aron

ABBREVIATIONS

AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	Low pressure connection
С	Stroke (MM)
CH	Across flats
Сн	INTERNAL ACROSS FLATS
DA	Amplitude decay (dB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I%	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
P	LOAD PRESSURE (BAR)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	Pump flow (L/min)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

www.aron.it - sales@brevinifluidpower.com

General terms and conditions of sale: see website www.aron.it

COMPENSATED FLOW REGULATORS

QC.3.2... CH. III PAGE 2 QC.3.3... CH. III PAGE 3

CHECK VALVE HOLDER FOR REGULATORS

AM.3.ABU... . Ch. III page 4

QC.3.2...

OVERALL DIMENSIONS

Ch. III page 4

QC.3.2... 2 WAY COMPENSATED

FLOW RATE REGULATORS

These QC.3.2... compensated flow rate regulators are designed to control and maintain a constant irrespective of the pressure variations upstream and downstream of the regulation section. Their new cast construction has made it possible to obtain a wider flow rate range, taking the upper limit to 35 l/min (4 turns version) while maintaining unchanged the pressure differential required to obtain good pressure compensation.

All models are available with and without reverse flow check valve, complete with an "anti-jump" device on request. This accessory has been designed to eliminate the problem which manifests itself as a "anti-jump" in the controlled actuator due to the instantaneous flow rate variation that takes place under the form of a transient every time the flow is made to pass through the regulator. Max. operating pressure 320 bar Opening pressure (with bypass) 1 bar Min. regulated flow rate (Q1 version) 0.03 ÷ 0.05 l/min Nominal regulated flow rate

(1 turn version) 1,5 \div 30 l/min Nominal regulated flow rate

Ambient temperature $-25^{\circ}\text{C} \div 60^{\circ}\text{C}$ Max. contamination level(*) class 10 in accordance with NAS 1638 with filter $\beta_{2a} \gtrsim 75$

Dependency on temperature (Q1 vers.) 5%
Dependency on temperature (Q2 vers.) 3%
Dependency on temperature (Q3-Q4-Q5-Q6) 2%
Weight 1,5 Kg

(*) Max contamination level must be respect to obtain the right function of the valve

ORDERING CODE

QC

Compensated flow rate regulated

CETOP 3/NG6

2)

2 way

G

Anti-jump system with internal check valve (omit if not required)

**

Nominal flow rate ranges

1 Turn version
Q1 = 1,5 l/min
Q2 = 3 l/min
Q3 = 9 l/min
Q4 = 19 l/min
Q5 = 24 l/min
Q5 = 28 l/min
Q1 = 1,5 l/min
Q2 = 4 l/min
Q3 = 10 l/min
Q4 = 21 l/min
Q5 = 28 l/min

Q6 = 30 l/min **Q6** = 35 l/min

K

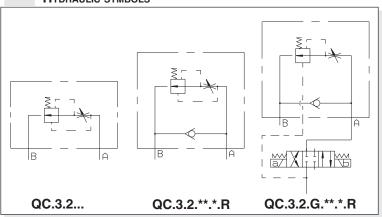
Version with lock (omit if not required)

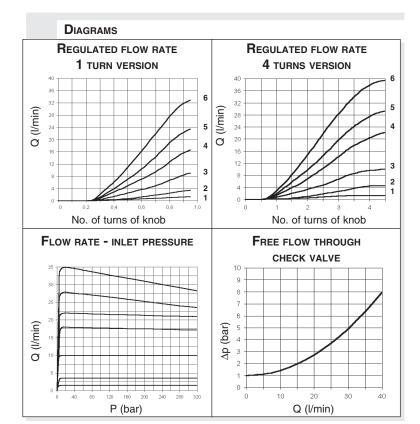
*

1 = 1 turn version 4 = 4 turns version

R

With internal check valve (omit if not required)


**


00 = No variant **V1** = Viton

5

Serial No.

HYDRAULIC SYMBOLS

QC.3.3			
OVERALL DIMENSIONS	Ch. III page 4		
AM.3.ABU	Ch. III page 4		

QC.3.3... 3 WAY COMPENSATED

FLOW RATE REGULATORS

This regulator type can be used whenever it is necessary to obtain a constant fluid flow irrespective of the pressure variations present upstream or downstream. It is fitted with a third T line for discharging any excessive flow rate.

When the reverse flow check valve is needed, the check valve holder type "AM.3.ABU.3..."can be fitted underneath the valve. (The check valve holder must be ordered separately see page III•4)

-25°C ÷ 60°C

Max. operating pressure 320 bar Opening pressure (with bypass) 1 bar

Min. regulated

flow rate (Q1 version) $0.03 \div 0.05 \text{ l/min}$

Nominal regulated

Ambient temperature

flow rate $1 \div 22$ l/min Difference in pressure (Δp) for vers. Q1 3 bar Difference in pressure (Δp) Q2-Q3-Q4-Q5-Q6 8 bar Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500$ mm²/s Fluid temperature $-25^{\circ}\text{C} \div 75^{\circ}\text{C}$

Max. contamination level(*) class 10 in accordance

 $\begin{array}{c} \text{with NAS 1638 with filter } \beta_{25}{\!\!\!>}75\\ \text{Dependency on temperature (Q1 vers.)} & 5\%\\ \text{Dependency on temperature (Q2 vers.)} & 3\% \end{array}$

Dependency on temperature (Q3-Q4-Q5) 2% Weight 1,5 Kg

(*) Max contamination level must be respect to obtain the right function of the valve

ORDERING CODE

Compensated flow rate regulator

3 CETOP 3/NG6

3) 3 way

QC

**

3

Flow rate ranges

Q1 = 1 l/min

Q2 = 3 I/min

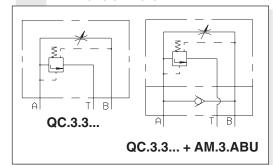
Q3 = 9 l/min

 $\mathbf{Q4} = 17 \text{ l/min}$

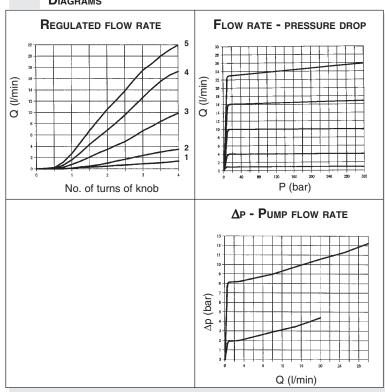
Q5 = 24 l/min

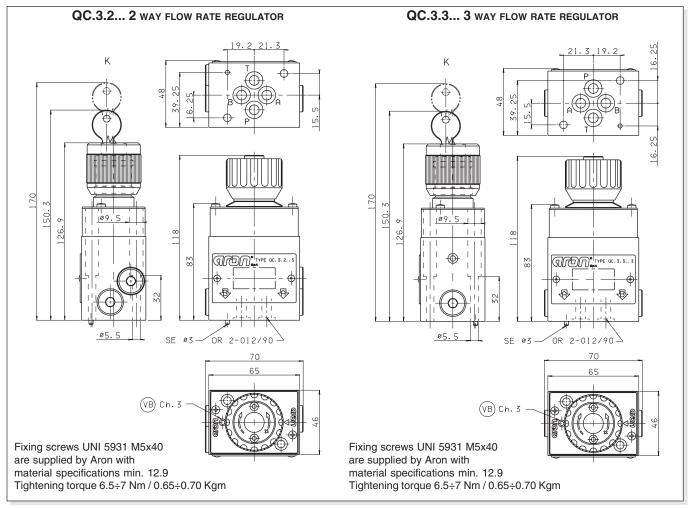
Version with lock (omit if not required)

1 = 1 turn version


4 = 4 turns version

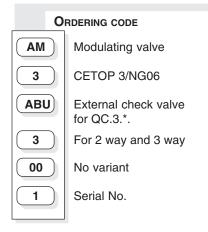
**) **00** = No variant

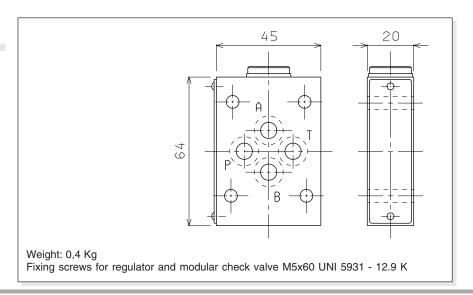

V1 = Viton


Serial No.

HYDRAULIC SYMBOLS

DIAGRAMS


File: FTQC3\$00\$ 00/2000/e



AM.3.ABU... CHECK VALVE HOLDER FOR REGULATORS TYPE QC.3...

This check valve holder must be fitted underneath the QC valve when he reverse flow function is needed.

TECHNICAL **CATALOGUE ARON 2010**

CETOP 2

MODULAR VALVES

ABBREVIATIONS

AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	Low pressure connection
С	Stroke (MM)
CH	Across flats
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
l %	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
Р	Load pressure (bar)
PARBAK	Parbak ring
PL	Parallel connection
P R	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	Pump flow (L/min)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

www.aron.it - sales@brevinifluidpower.com

General terms and conditions of sale: see website www.aron.it

AM.2.UD	
	CH. IV PAGE 2
AM.2.UP	
	CH. IV PAGE 3
AM.2.VM	
	CH. IV PAGE 4
AM.2.QF	
	CH. IV PAGE 5
SCREWS AND STUDS	
	CH. IV PAGE 6

MODULAR VALVES CETOP 5

AM.5.UD	
	Ch. IV PAGE 22
AM.5.UP	
	Ch. IV page 23
AM.5.VM / AM.5.VI	
	CH. IV PAGE 24
AM.5.CP	
	CH. IV PAGE 26
AM.5.VR	
	Ch. IV PAGE 27
AM.5.VS	
	CH. IV PAGE 29
AM.5.SH	
	Ch. IV page 30
AM.5.QF	
	Ch. IV page 31
AM.88	
	Ch. IV page 32
A.88	
	CH. IV PAGE 33
AM.5.RGT	
	CH. IV PAGE 34
SCREWS AND STUDS	
	CH. IV PAGE 35

MODULAR VALVES CETOP 3

aron

AM.3.UD	
	CH. IV PAGE 7
AM.3.UP / AM.3.UP1	
	CH. IV PAGE 8
AM.3.VM / AM.3.VI	
	Ch. IV page 9
AM.3.CP	
	CH. IV PAGE 11
AM.3.RD / AM.3.SD	
	CH. IV PAGE 12
AM.3.VR	
	CH. IV PAGE 13
AM.3.VS	
	CH. IV PAGE 15
AM.3.SH	
	CH. IV PAGE 16
AM.3.QF	
	CH. IV PAGE 17
AM.66	
	CH. IV PAGE 18
A.66	
	CH. IV PAGE 19
AM.3.RGT	
	CH. IV PAGE 20
SCREWS AND STUDS	
	CH. IV PAGE 21

MODULAR VALVES CETOP 7

AM.7.UP	
	CH. IV PAGE 36
AM.7.QF	
	CH. IV PAGE 37

@ aron' .

AM.2.UD...

SCREWS AND STUDS CH. IV PAGE 6

AM.2.UD... MODULAR DIRECT CHECK VALVES CETOP 2

AM.2.UD type modular check valves allow one way free flow, while preventing any flow in the opposite direction by means of a conical seated poppet.

They are available on single P and T lines (see hydraulic symbols).

1 bar spring is standard, while a 5 bar rated spring is available on request.

Max. operating pressure 250 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Max. flow 20 l/min Mineral oils DIN 51524 Hydraulic fluids Fluid viscosity 10 ÷ 500 mm²/s a 50°C -20°C ÷ 75°C Fluid temperature Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ 0,4 Kg Weight

ORDERING CODE

AM

Modular valve

CETOP 2/NG4

UD

**

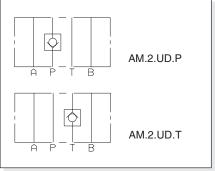
1

2

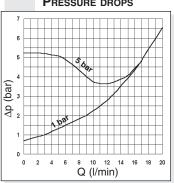
Direct check valve

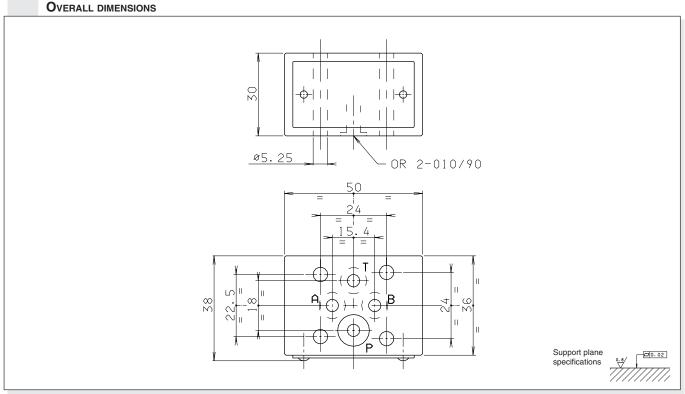
Control on lines P / T

Minimum opening pressure


1 = 1 bar

5 = 5 bar


00 = No variant V1 = Viton


Serial No.

HYDRAULIC SYMBOLS

PRESSURE DROPS

AM.2.UP...

SCREWS AND STUDS CH. IV PAGE 6

AM.2.UP... MODULAR PILOT OPERATED CHECK VALVES CETOP 2

AM.2.UP type modular check valves allow one way free flow by raising a conical shutter, while in the opposite direction the fluid can return by means of a small piston piloted by the pressure in the other line.

They are available on single A or B lines, and on double A and B lines (see hydraulic symbols).

Max. operating pressure 250 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Piloting ratio: 1:4 Max. flow 20 l/min Hydraulic fluids Mineral oils DIN 51524 10 ÷ 500 mm²/s a 50°C Fluid viscosity Fluid temperature -20°C ÷ 75°C Max. contamination level class 10 in accordance with NAS 1638 with filter β₂₅≥75 Weight 0,5 Kg

ORDERING CODE

ΑM

Modular valve

2

CETOP 2/NG4

UP

Piloted check valve

**

Control on lines A / B / AB

Minimum opening pressure

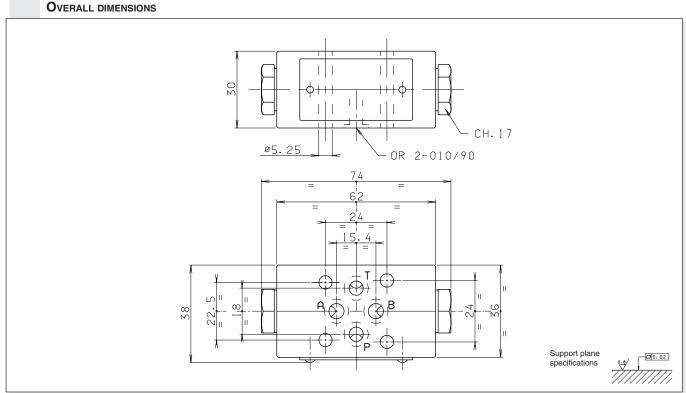
1 = 1 bar

5 = 5 bar

**

00 = No variant

V1 = Viton


1

Serial No.

PRESSURE DROPS 20 15 10 6 8 10 12 14 16 18 20 Q (I/min)

Curve n. 3 = Piloted side flow

HYDRAULIC SYMBOLS AM.2.UP.A AM.2.UP.B AM.2.UP.AB

ΑN	1.2.\	VM

CMP.02	BFP CARTRIDGE CATALOGUE
SCREWS AND STUDS	Ch. IV page 6

AM.2.VM... MODULAR MAXIMUM PRESSURE VALVES CETOP 2

(Aaran

AM.2.VM type pressure regulating valves are available with an operating pressure range of 4 to 250 bar.

Adjustment is via a grub screw. Two base versions are available: AM.2.VM.. single on A or B, and double on A and B lines, with drainage on T; AM.3.VM.P.. single on P line, with drainage on T.

4 different types of springs can be mounted on all versions, with the adjustment range specified in the specifications. The cartridge used is the CMP.02 type.

250 bar
30 bar
90 bar
180 bar
250 bar
20 I/min
l 51524
a 50°C
÷ 75°C
ordance
B ₂₅ ≥75
0,53 Kg
0,7 Kg

ORDERING CODE

AM

Modular valve

2

CETOP 2/NG4

VM

Max. pressure valves

Adjustment on the lines A/B/P/AB

С

Type of adjustment grub screw

Setting ranges at port A/B/P

1 = max.30 bar (white spring)

2 = max.90 bar (yellow spring)

3 = max.180 bar (green spring)

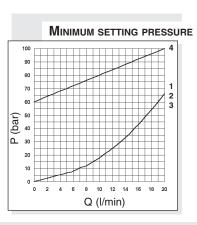
4 = max.250 bar (orange spring)

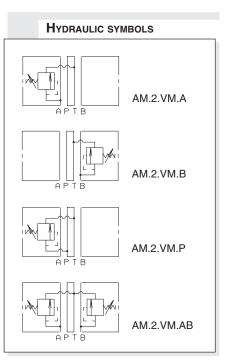
Setting ranges at port B (Omit if the setting is same as that at port A)

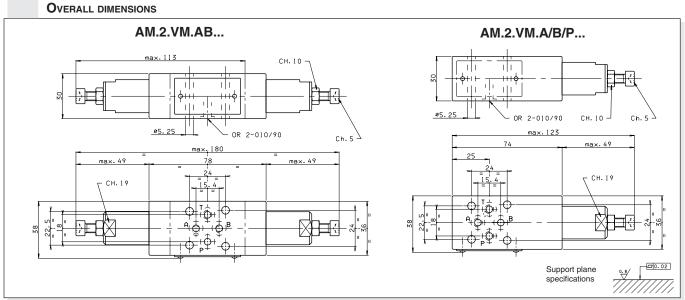
1 = max.30 bar (white spring)

2 = max.90 bar (yellow spring)

3 = max.180 bar (green spring)


4 = max.250 bar (orange spring)


00 = No variant V1 = Viton


1

Serial No.

PRESSURE - FLOW RATE 220 200 180 P (bar) Q (I/min)

AM.2.QF...

SCREWS AND STUDS CH. IV PAGE 6

AM.2.QF... MODULAR FLOW REGULATOR CETOP 2

aron

0,5 Kg

0,6 Kg

AM.2.QF type one way non-compensated throttle valves are adjustable by means of a grub screw.

Three types of regulations are available on A / B / AB lines, as shown in the hydraulic symbols.

Max. operating pressure 250 bar Flow rate regulation on 6 screw turns Max. flow. 20 I/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2\text{/s a } 50^\circ\text{C}$ Fluid temperature -20°C ÷ 75°C Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$

Weight AM.2.QF.A/B...

Weight AM.2.QF.AB...

ORDERING CODE

AM

Modular valve

2

CETOP 2/NG4

QF

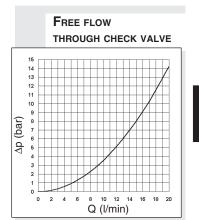
Non-compensated flow rate regulator

**

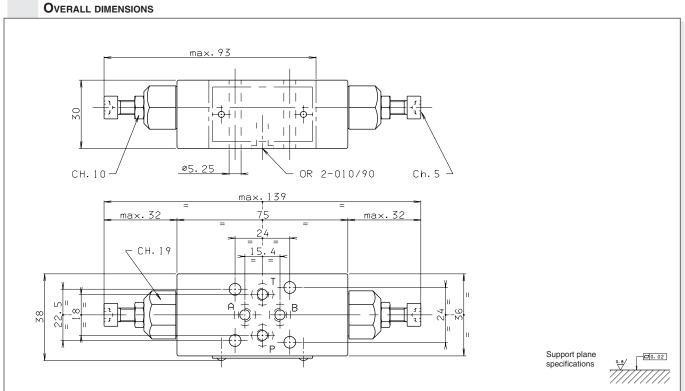
С

**

Control on lines A/B/AB

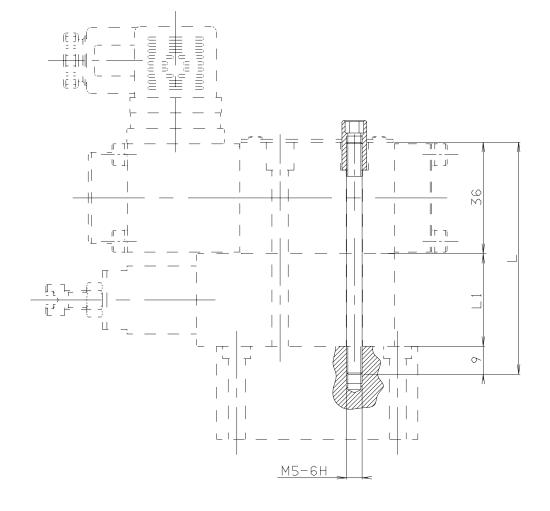

Type of adjustment

grub screw


00 = No variant V1 = Viton

1 Serial No.

FLOW REGULATION 160 ∆p (bar) Q (I/min)


HYDRAULIC SYMBOLS AM.2.QF.A AM.2.QF.B AM.2.QF.AB

OVERALL DIMENSIONS

Tighten M27.05.0001 to a torque of 5 Nm / 0.5 Kgm max.

SCREWS CODE T.C.E.I	L	L1	COMPOSITION		Qty.
Q26.07.4069	35	/	AD2		4
Q26.07.4243	65	30	AD2 + 1 AM2 (ISO)		4
Q26.07.4252	95	60	AD2 + 2 AM2 (ISO)		
STUDS CODE	L	L1	COMPOSITION	SPECIAL NUTS CODE	Qty.
M80.10.0008	135	90	AD2 + 3 AM2	M27.05.0001	4
M80.10.0020	165	120	AD2 + 4 AM2	M27.05.0001	4

AM.3.UD...

Ch. IV page 21 SCREWS AND STUDS

AM.3.UD... MODULAR DIRECT CHECK VALVES CETOP 3

AM.3.UD type modular check valves allow one way free flow, while flow in the opposite direction is prevented by means of a conical seated poppet.

They are available on single A, B, P and T lines, and on double A and B, P and T lines (see hydraulic symbols).

1 bar spring is standard, while a 5 bar rated spring is available on request.

Max. operating pressure 350 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Max. flow 40 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm²/s a 50° Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter β_{or}≥75 Weight 0,8 Kg

ORDERING CODE

AM

UD

**

Modular valve

3

CETOP 3/NG6

Direct check valve

Control on lines A/B/P/T/AB

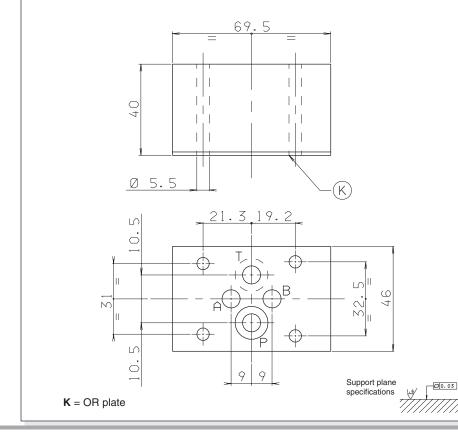
*

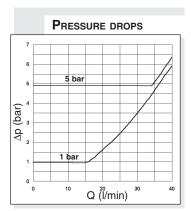
Minimum opening pressure

1 = 1 bar

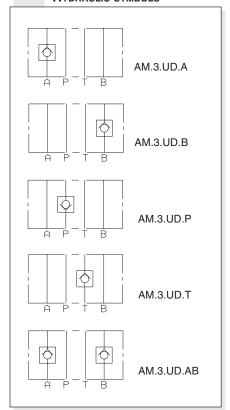
5 = 5 bar

**


2


00 = No variant

V1 = Viton


Serial No.

OVERALL DIMENSIONS

HYDRAULIC SYMBOLS

AM

3

**

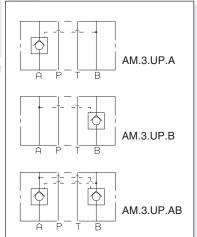
3

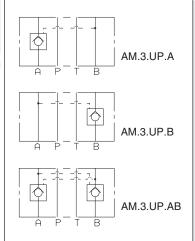
AM.3.UP / AM.3.UP1...

SCREWS AND STUDS

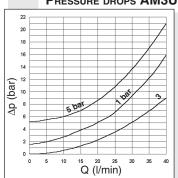
Ch. IV page 21

AM.3.UP... / AM.3.UP1... MODULAR PILOT OPERATED CHECK VALVES CETOP 3

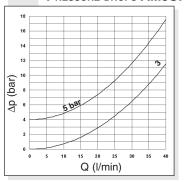

AM.3.UP type modular check valves allow free flow in one direction by raising a conical seated poppet valve, while in the opposite direction the fluid can return by means of a small piston piloted by the other line pressure (piloted side).


They are available on single A or B lines, and double A and B lines (see hydraulic symbols).

A pre-opening version is also available (AM3UP1..) only with 5 bar spring.


Max. operating pressure 350 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Piloting ratio AM.3.UP 1:4 Piloting ratio AM.3.UP1 1:12,5 Max. flow 40 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter β₂₅≥75 Weight ĭ Kg

HYDRAULIC SYMBOLS



PRESSURE DROPS AM3UP

PRESSURE DROPS AM3UP1

Curve n. 3 = Piloted side flow

5 = 5 bar

Minimum opening

00 = No variant

pressure

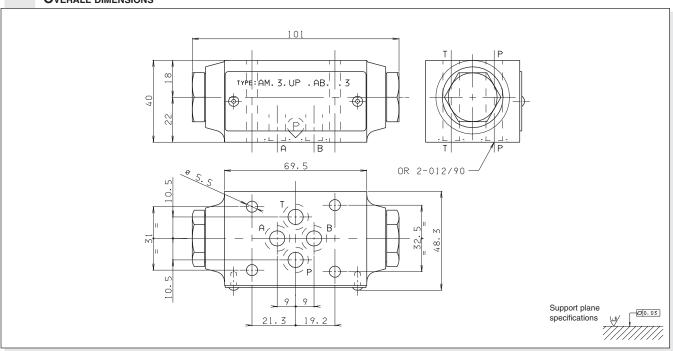
ORDERING CODE

Modular valve

CETOP 3/NG6

UP = Piloted check valve **UP1** = With pre-opening

Control on lines A / B / AB


1 = 1 bar (only for UP version)

V1 = Viton

Serial No.

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out a fluid temperature of 50°C.

OVERALL DIMENSIONS

AM.3.VM / AM.3.VI...

CMP.10	BFP CARTRIDGE CATALOGUE
SCREWS AND STUDS	CH IV PAGE 21

AM.3.VM... / AM.3.VI... MODULAR MAX. PRESSURE VALVES CETOP 3

AM.3.VM type pressure regulating valves are available with a pressure range of 2 ÷ 320 bar.

Adjustment is by means of a grub screw or a plastic knob.

Three basic versions are available:

- AM3VM on single A or B lines, and on A and B lines, with drainage to T;
- AM3VMP on single P line, with drainage to T;
- AM3VI on single A or B lines, and on A and B lines, with crossed drainage on A or B (see hydraulic symbols). All versions can accept three types of springs with calibrated ranges as shown in the specifications.

The cartridge, which is the same for all versions, is the direct acting type

For the minimum permissible setting pressure depending on the spring, see minimum pressure setting curve.

Max. operating pressure		320 bar		
Setting ranges:	spring 1	max. 50 bar		
	spring 2	max. 150 bar		
	spring 3	max. 320 bar		
Max. flow		40 l/min		
Hydraulic fluids	Mine	ral oils DIN 51524		
Fluid viscosity		10 ÷ 500 mm ² /s		
Fluid temperature		-25°C ÷ 75°C		
Ambient temperature	е	-25°C ÷ 60°C		
Max. contamination	level class	10 in accordance		
with NAS 1638 with filter B ₂₅ ≥75				
Weight AM.3.VM.A/	B/P	1,2 Kg		
Weight AM.3.VM.AE	3	1,3 Kg		
Weight AM.3.VI.A/B		2 Kg		
Weight AM.3.VI.AB.		2,2 Kg		

ORDERING CODE

AM

Modular valve

3

CETOP 3/NG6

**

VM = Maximum pressure

VI = Maximum pressure crossline

Adjustment on the lines AM.3.VM Version = A / B / P / AB AM.3.VI Version = A / B / AB

Type of adjustment M = Plastic knob

C = Grub screw

Setting ranges at port A/B/P

1 = max. 50 bar (white spring) 2 = max. 150 bar (yellow spring)

3 = max. 320 bar (green spring)

Setting ranges at port B (Omit if the setting is same as that at port A)

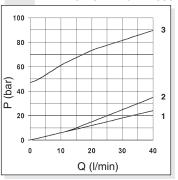
1 = max. 50 bar (white spring)

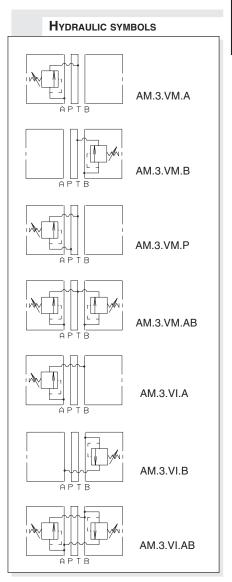
2 = max. 150 bar (yellow spring)

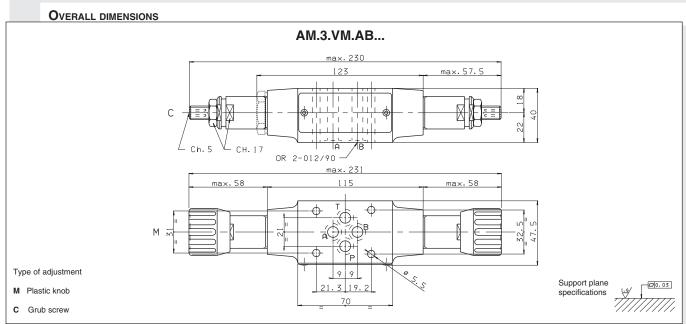
3 = max. 320 bar (green spring)

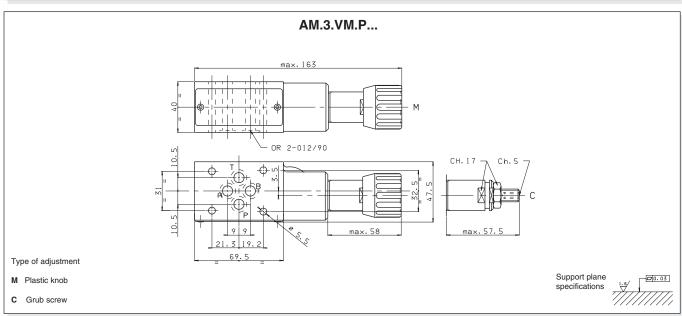
**

00 = No variant V1 = Viton


3


Serial No.




Curves n° 1 - 2 - 3 = setting ranges

MINIMUM SETTING PRESSURE

AM.3.CP...

CMP.10... BFP CARTRIDGE CATALOGUE

Ch. IV PAGE 21 SCREWS AND STUDS

ORDERING CODE

AM

Modular valve

3

CETOP 3/NG6

CP

Back pressure valve

**

Control on lines A/B/AB

*

*

Type of adjustment

M = Plastic knob C = Grub screw

Setting ranges

1 = max. 50 bar (white spring)

2 = max. 150 bar (yellow spring)

3 = max. 320 bar (green spring)

**

00 = No variant V1 = Viton

Serial No.

3

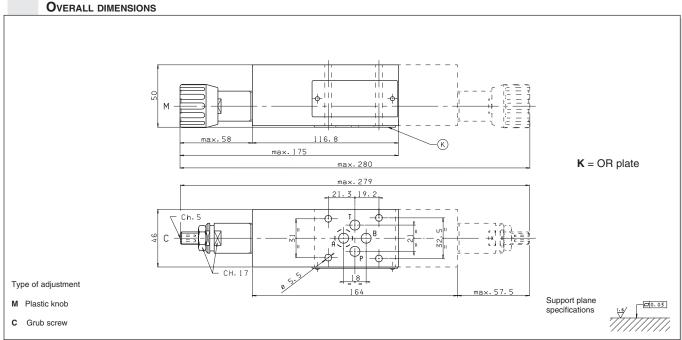
AM.3.CP... MODULAR BACK PRESSURE VALVE CETOP 3

AM3CP type back pressure valves are damped in-line direct acting pressure relief valves fitted with bypass non-return valves.

Adjustment within the range $2 \div 320$ bar is by means of a grub screw or a plastic knob, on ports A or B (single) or AB (double).

The cartridge is the direct acting type

These valves are especially used on vertically working cylinders with dragging loads.


For the minimum permissible setting pressure depending on the spring, see minimum pressure setting curve.

350 bar Max. operating pressure Setting ranges: max. 50 bar spring 1 spring 2 max. 150 bar spring 3 max. 320 bar Max. flow 40 l/min Hydraulic fluids Mineral oils DIN 51524 10 ÷ 500 mm²/s Fluid viscosity Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ /R 2 Kg Weight AM.3.CP.A/B... Weight AM.3.CP.AB... 2,7 Kg

PRESSURE - FLOW RATE 360 280 240 200 (par) 80 40 15 20 25 Q (I/min)

HYDRAULIC SYMBOLS AM.3.CP.A AM.3.CP.B AM.3.CP.AB

MINIMUM SETTING PRESSURE 100 80 P (bar) 20 10 20 40 Q (I/min)

AM.3.RD / AM.3.SD...

SCREWS AND STUDS

Ch. IV PAGE 21

ORDERING CODE

AM

Modular valve

3

CETOP 3/NG6

**

RD = Direct pressure reducing valve **SD** = Direct pressure sequencing valve

*

Control on lines

AM.3.RD version = A / P

AM.3.SD version = **P**

*

1 = Positive overlap

2 = Negative overlap

Omit for version AM3SD

*

Type of adjustment

C = Grub screw **V** = Handwheel

*

Setting ranges

 $1 = \text{max. } 2 \div 30 \text{ bar (white spring)}$

2 = max. 10 ÷ 120 bar (yellow spring)

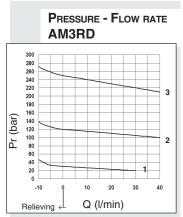
3 = max. 60 ÷ 250 bar (green spring)

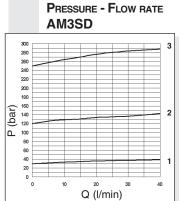
(**)

00 = No variant

V1 = Viton

4

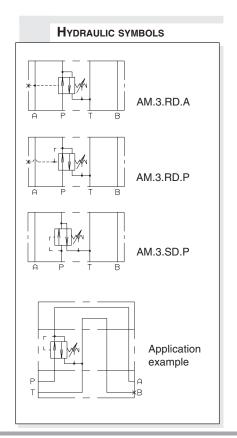

Serial No.


AM.3.RD... /AM.3.SD... MODULAR PRESSURE REDUCING / PRESSURE SEQUENCING VALVES CETOP 3

AM3RD and AM3SD valves are direct acting spool type pressure reducing and sequencing units, respectively, with one end pre-loaded by means of a spring an the other end exposed to the hydraulic pressure.

The drainage is drained within the valve to port T. Pressure is adjustable by means of a screw and locknut, or of a handwheel. Three types of springs allow adjustment within the range 2÷250 bar. The pressure reducing valves are available in two versions: with positive overlap (suitable with low flow rate) and with negative overlap to obtain a greater pressure reinstatement speed.

Max. operating pressure: port P 350 bar Max. pressure adjustable 250 bar 2 ÷ 30 bar Setting ranges: spring 1 10 ÷ 120 bar spring 2 60 ÷ 250 bar spring 3 Max. flow 40 l/min Internal drainage RD: Positive overlap version 0,5 l/min Negative overlap version 2 l/min Mineral oils DIN 51524 Hydraulic fluids Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ Weight 1,3 Kg



The fluid used is a mineral based oil with a viscosity of 46 mm²/sec at 40 degrees C. The tests have been carried out at with a fluid temperature of 40 degrees C.

^

AM.3.VR...

CVR.20... BFP CARTRIDGE CATALOGUE

SCREWS AND STUDS CH. IV PAGE 21

AM.3.VR... MODULAR REDUCING VALVES WITH RELIEVING - PILOT OPERATED CETOP 3

These pressure reducing valves ensure a minimum pressure variation on the P or A port with changing flow rate up to 90 l/min.

Three spring types allow adjustment within the range $7 \div 250$ bar. Manual adjustment is available by a grub screw or plastic knob.

The RELIEVING SYSTEM inside the valve AM3VR allows the passage from the setting pressure line to T line of the flow through the valve to avoid the increasing of pressure in the reduced-pressure line by diverting exceeding flow to reservoir. A bypass module with check valve for free flow from A to AR port (see hydraulic symbol) is available...

Max. operating pressure 350 bar Setting ranges: spring 1 max. 60 bar

spring 2 max. 120 bar spring 3 max. 250 bar

Maximum allowed ∆p pressure

between the inlet an outlet pressure Max. flow 40 l/min Draining on port T 0,5 \div 0,7 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 \div 500 mm²/s Fluid temperature -25°C \div 75°C

Ambient temperature $-25^{\circ}\text{C} \div 60^{\circ}\text{C}$ Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{2e} \ge 75$

Weight 1,36 Kg
Weight bypass version 2 Kg

ORDERING CODE

AM Modular valve

3

*

В

**

1

CETOP 3/NG6

Pilot operated pressure reducing valve with relieving

Control on lines

P = Drain on T

 $\mathbf{A} = \text{Drain on T}$

D = Drain on B reduct pressure on A

Drain connection

E = External (only for control on the P line)

I = Internal (Standard)

Version with bypass on line A only

Omit if not required

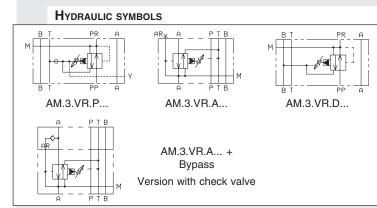
Type of adjustment

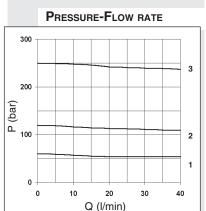
M = Plastic knob

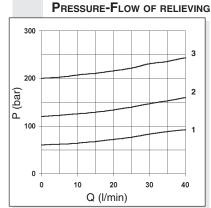
C = Grub screw

Setting ranges

1 = max. 60 bar (white spring)

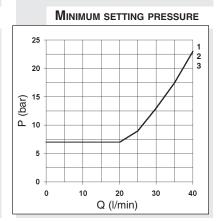

2 = max. 120 bar (yellow spring)


3 = max. 250 bar (green spring)


00 = No variant

V1 = Viton

Serial No



To changes valves AM.3.VR.P... from internal to external drainage it is necessary: - screw out the plug on the "Y" port - screw out the plug T.C.E.I. M8x1 from the

- screw in a screw S.T.E.I. M6
- rescrew the T.C.E.I. M8x1 plug on the body

NOTE: the external draining can be used as a piloting line (please, contact our Technical Service for other informations)

ΔP AM.3.VR... + Bypass 8 7 6 6 (log 4 Δ √ 3 2 1 0 0 10 20 30 40 Q (l/min)

Curves n° 1 - 2 - 3 = setting ranges

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out a fluid temperature of 50°C.

OVERALL DIMENSIONS AM.3.VR.P... / AM.3.VR.D... ma× 177 CH 24 45 CH 5 CH 17 OR 2-012/90 111 ma× 61.5 4.5 21.3 19.2 AM.3.VR.A... + BYPASS ma× 177 B Bypass (optional) Ordering code: V89.45.000 di by-pass (opzionale) (if ordered separately) CH 24 69 Μ1 **\$** 45 CH 5 CH 17 OR 2-012/90 max 61.5 111 4.5 М1 ma× 70 21.3 19.2 Type of adjustment Support plane M Plastic knob specifications C Grub screw

AM.3.VS...

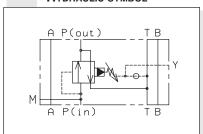
CVS.20... BFP CARTRIDGE CATALOGUE

SCREWS AND STUDS Ch. IV PAGE 21

AM.3.VS... MODULAR SEQUENCING VALVES CETOP 3

aron

The sequence valve are used to assure that a secondary circuit is pressurized when the setting pressure is


These valves grant a minimum variation of the setting pressure with a changing flow up to 40 l/min (see diagram).

Three spring types allow adjustment within the range 7 ÷ 250 bar. Manual adjustment is available by a grub screw or plastic knob.

The cartridge used is the "CVS" type.

Max. operating p	ressure	350 bar
Setting ranges:	Spring 1	max. 60 bar
	Spring 2	2 max. 120 bar
	Spring 3	max. 250 bar
Max. flow		40 l/min
Draining on port	T	0,5 ÷ 0,7 l/min
Hydraulic fluids		Mineral oils DIN 51524
Fluid viscosity		$10 \div 500 \text{ mm}^2/\text{s}$
Fluid temperature	е	-25°C ÷ 75°C
Ambient tempera	ature	-25°C ÷ 60°C
Max. contaminati	ion level	class 10 in accordance
	with NA	S 1638 with filter $\beta_{25} \ge 75$
Weight		1,36 Kg

HYDRAULIC SYMBOL

3

Modular valve

ORDERING CODE

AM

CETOP 3/NG6

vs

Sequencing valve

Drain connection

E = External

I = Internal (Standard)

Type of adjustment

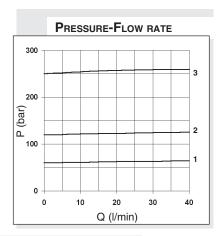
M = Plastic knob

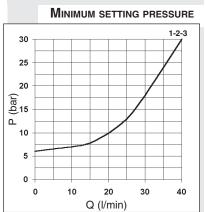
C = Grub screw

Setting ranges

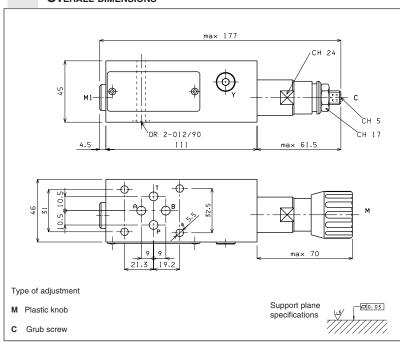
1 = max. 60 bar (white spring)

2 = max. 120 bar (yellow spring)


3 = max. 250 bar (green spring)


**

00 = No variant


V1 = Viton

1 Serial No

OVERALL DIMENSIONS

Curves n° 1 - 2 - 3 = setting ranges

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at a fluid temperature of 50°C.

To changes valves AM.3.VS... from internal to external drainage it is necessary:

- screw out the plug on the Y port
- screw out the plug T.C.E.I. M8x1 from the body
- screw in a screw S.T.E.I. M6
- rescrew the T.C.E.I. M8x1 plug on the body

NOTE: the external draining can be used as a piloting line (please, contact our Technical Service for other informations)

AM.3.SH...

SH.03	BFP CARTRIDGE CATALOGUE
SCREWS AND STUDS	Ch. IV page 21

SHUTTLE VALVES CETOP 3 Modular valves type AM.3.SH are actuator load pressure selecting units, as they are fitted with an integral shuttle valve cartridge which allows taking of the highest pressure signal to the

AM.3.SH... MODULAR

external port via displacement of a ball. They are usually employed to signal the actuator load to the pressure compensator of load sensing pump, or for the command of fail-safe

For seat overall dimensions see cartridge shuttle SH.03 type.

() aron

Max. operating pressure 350 bar Max. flow at the cartridge 3 l/min Max. flow at ports A/B/P/T 40 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter $\rm B_{25}\!\!\geq\!\!75$ 1 Kg

Weight 20÷30 Nm/2÷3 Kgm Cartridge tightening torque

ORDERING CODE

ΑM

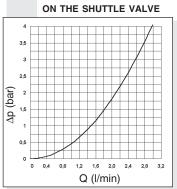
Modular valve

3

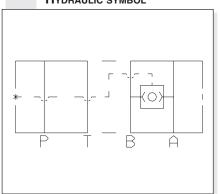
CETOP 3/NG6

SH

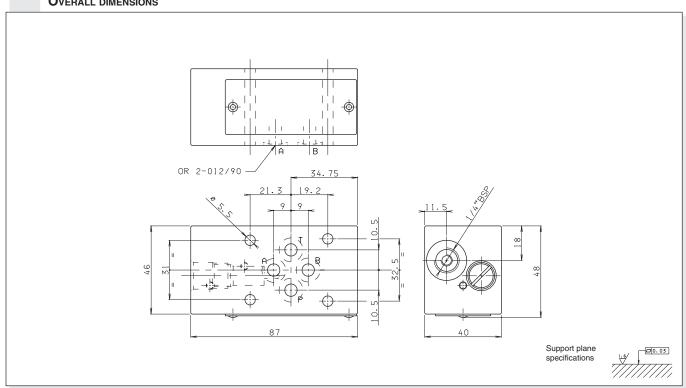
Cartridge shuttle


**

1


00 = No variant V1 = Viton

Serial No.


PRESSURE DROPS

HYDRAULIC SYMBOL

OVERALL DIMENSIONS

AM.3.QF...

SCREWS AND STUDS

Ch. IV page 21

AM.3.QF... MODULAR FLOW REGULATOR CETOP 3

AM.3.QF type one way non-compensated throttle valve are fitted with an O-Ring mounting plate which allows its assembly for either input or output regulation. Adjustment is obtained by means of a grub screw or a plastic knob. They are available in the four regulating configurations shown in the hydraulic diagrams.

The standard valve configuration allows "meter in" regulation, while it is possible to obtain "meter out" regulation by turning the valve by 180° along its longitudinal axis.

Max. operating pressure 350 bar Max. pressure adjustable 250 bar Flow rate regulation on 8 screw turns Max. flow 40 l/min Mineral oils DIN 51524 Hydraulic fluids 10 ÷ 500 mm²/s Fluid viscosity Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter ß₂₅≥75 Weight 1,5 Kg

ORDERING CODE

AM

Modular valve

3

CETOP 3/NG6

QF

Non compensated throttle valve

**

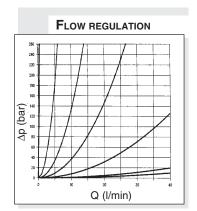
Control on lines

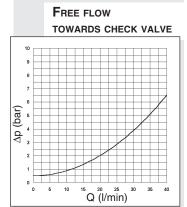
A/B/P/AB

(*)

Type of adjustment **M** = Plastic knob

C = Grub screw


**


00 = No variant

V1 = Viton

4

Serial No.

HYDRAULIC SYMBOLS AM.3.QF.A AM.3.QF.B AM.3.QF.P AM.3.QF.AB

OVERALL DIMENSIONS K = OR plate max.188.5 max.148.5 CH. 13 Ch. 6 С Type of adjustment max. 47 (K) M Plastic knob max.187.5 C Grub screw max.46.5 max. 46.5 Μ 00 Support plane max. 148 specifications

AM.66... MODULAR COMPENSATED FLOW CONTROL ASSEMBLY CETOP 3

This is an intermediate block (AM.66) for modular mounting of one or two flow rate regulators type QC.3...

The flow regulator type QC.3.2... must be ordered separately.

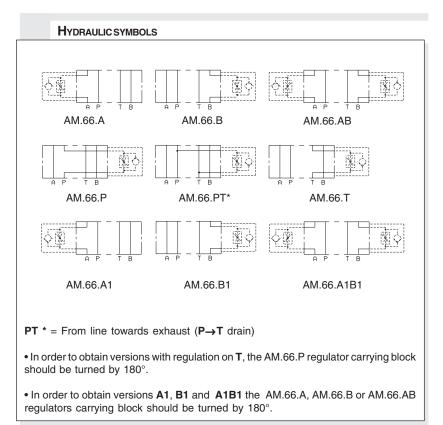
Max. operating pressure 320 bar Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ Weight 1,3 Kg

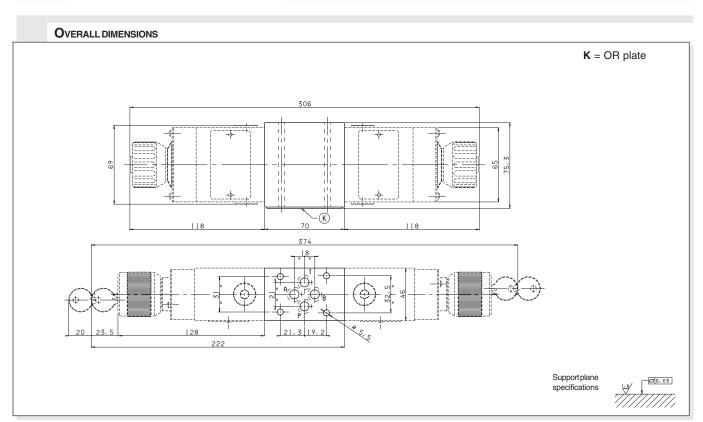
	AM.66
QC.3.2	Ch. III page 2
SCREWS AND STUDS	Ch. IV page 21

Modular valve

66

ΑM


Size


** Control on lines A/B/P/PT*/AB For T / A1 / B1 / A1B1 versions see table "Hydraulic symbols"

00 = No variant

V1 = Viton

3 Serial No.

A.66					
DC coils	Ch. I page 67				
STANDARD CONNECTORS	Ch. I PAGE 19				
QC.3.2	Ch. III page 2				
SCREWS AND STUDS	Ch. IV page 21				

A.66... MODULAR FLOW CONTROL VALVES FAST / SLOW ASSEMBLY CETOP 3

() aron

This is modular assembly ON/OFF solenoid valve which, by fitting suitable 2 way regulator, allows two speed operation in the same system via an electrical changeover command.

The flow rate regulator type QC.3.2... must be ordered separately.

The operational limit curves have been obtained with the regulator fully closed, and those same limits improve gradually with the opening of the regulator.

The test have been carried out at operating temperature, with a voltage 10% lower than rated voltage and with a fluid temperature of 50 degrees C. The fluid used was a mineral based oil with a viscosity of 46 mm²/s at 40 degrees C.

ORDERING CODE

A

Speed control valve

66 Size

E

Electrical operator

120 = Normally open

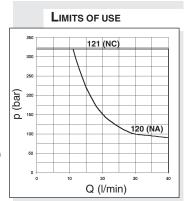
12

121 = Normally closed See table hydraulic symbols

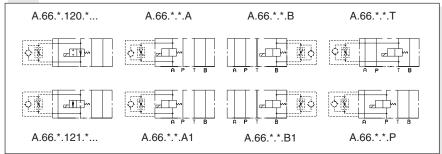
*

Control on lines **A/B/P/T** (see symbols) The interface holder "H" must be turned by 180° in order to obtain the **A1** and **B1** versions.

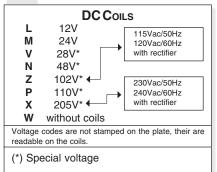
*


Voltage: see tab.1

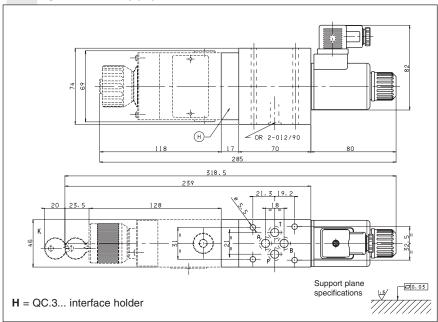
**


Variants: see tab.2

_*____4 :


4 = Serial No.

HYDRAULIC SYMBOLS


TAB.1 VOLTAGE

TAB.2 - VARIANTS

TABLE VARIANTS	
No variant	00
(connectors as in the drawing)	
Viton	V1
Indicator light	X1
Rectifier	R1
Cable gland "PG11"	C1
Valve without connector (coil)	S1
Indicator light + rectifier	XR

OVERALL DIMENSIONS

AM.3.RGT... MODULAR VALVES FOR REGENERATIVE CIRCUIT CETOP 3

This modular valve produces a regenerative system to increase the actuator (differential cylinder) exit speed as shown in the diagram.

In particular, if a cylinder is used with a 2:1 ratio for the operating surfaces, the exit and re-entry speeds are the same.

AM.3.RGT...

SCREWS AND STUDS

Ch. IV PAGE 21

ORDERING CODE

AM

Modular valve

3

CETOP 3/NG6

RGT

For regenerative circuit

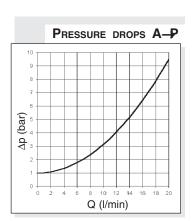
A

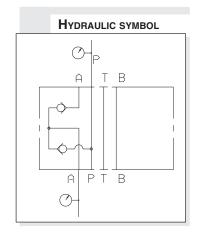
Size of check valves 3/8"BSP

1)

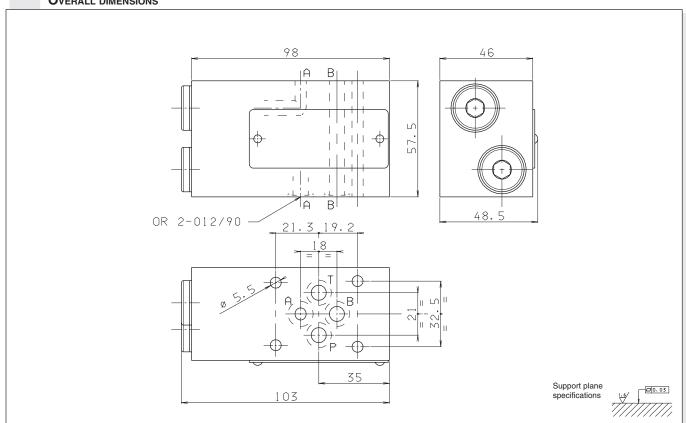
1

Opening pressure 1 bar

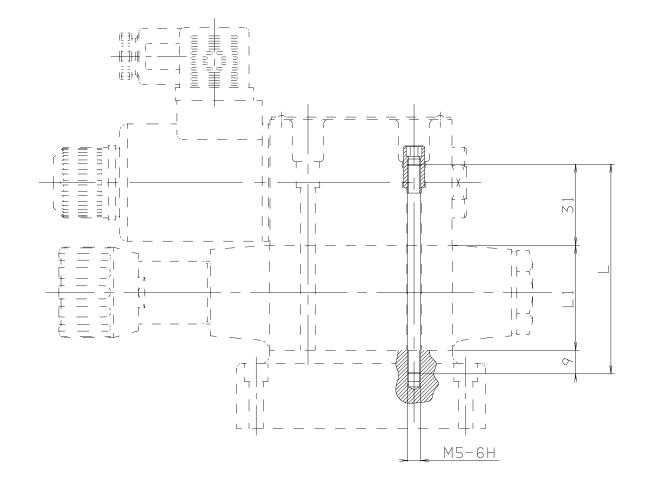

i Dai


**

00 = No variant


V1 = Viton

Serial No.


OVERALL DIMENSIONS

OVERALL DIMENSIONS

Tighten M27.05.0001 to a torque of 5 Nm / 0.5 Kgm max.

SCREWS CODE T.C.E.I	L	L1	COMPOSITION		Qty.
Q26.07.4068	30		AD3		4
Q26.07.4075	70	40	AD3 + 1 AM3 (ISO)		4
Q26.07.4076	75	45	AD3 + AM3VR		4
STUDS CODE	L	L1	COMPOSITION	SPECIAL NUTS CODE	Qty.
M80.10.0015	97	57,5	AD3 + AM3VI	M27.05.0001	4
M80.10.0007	115	74	AD3 + A66 o AM66	M27.05.0001	4
M80.10.0003	120	80	AD3 + 2 AM3 (ISO)	M27.05.0001	4
M80.10.0013	125	85	AD3 + AM3VR + AM3 (ISO)	M27.05.0001	4
M80.10.0011	155	114	AD3 + A66 + AM3 (ISO)	M27.05.0001	4
M80.10.0005	160	119	AD3 + A66 + AM3VR	M27.05.0001	4
M80.10.0005	160	120	AD3 + 3 AM3 (ISO)	M27.05.0001	4
M80.10.0020	165	125	AD3 + AM3VR + 2 AM3 (ISO)	M27.05.0001	4
M80.10.0017	170	130	AD3 + AM3CP + 2 AM3 (ISO)	M27.05.0001	4
M80.10.0023	195	154	A66 + 2 AM3 (ISO)	M27.05.0001	4

AM.5.UD...

SCREWS AND STUDS CH. IV PAGE 35

AM.5.UD... MODULAR DIRECT CHECK VALVES CETOP 5

AM5UD type modular check valves allow free flow in one direction, while a conical seated poppet prevents flow in the opposite direction.

They are available on single A, B, P and T lines, and on double A and B, P and T lines (see hydraulic symbols).

1 bar springs are standard, while 5 bar rated springs are available on request.

Max. operating pressure 350 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Max. flow 80 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter β₂₆≥75 Weight 2,1 Kg

ORDERING CODE

AM

Modular valve

5

CETOP 5/NG10

UD

Direct check valve

**

Control on lines
A/B/P/T/AB/PT

_*

Minimum opening pressure

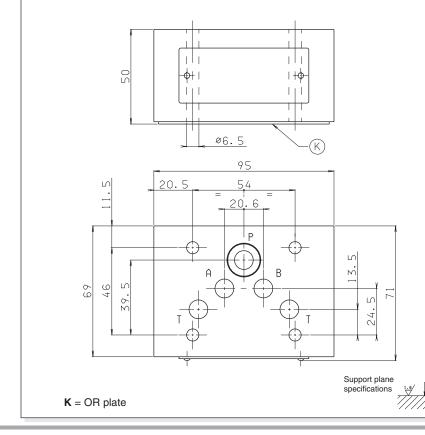
1 = 1 bar

5 = 5 bar

**

2

00 = No variant


V1 = Viton

Serial No.

PRESSURE DROPS (Jacob Strain Strain

HYDRAULIC SYMBOLS

OVERALL DIMENSIONS

AM.5.UD.A AM.5.UD.B AM.5.UD.P AM.5.UD.T AM.5.UD.AB AM.5.UD.AB

AM.5.UP...

SCREWS AND STUDS

Ch. IV page 35

AM.5.UP... MODULAR

PILOT OPERATED CHECK VALVES CETOP 5

AM5UP type modular check valves allow free flow in one direction by lifting a conical steel seated poppet, while in the opposite direction the fluid can return by means of a small piston piloted by the other line pressure (piloted side).

The cast valve body allows limited pressure drops during the fluid flow through the various P/A/B/T lines.

They are available on single A or B lines, and on double A and B lines (see hydraulic symbols).

Max. operating pressure 280 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Piloting ratio 1:14,3 Max. flow 80 l/min Hydraulic fluids Mineral oils DIN 51524 $10 \div 500 \text{ mm}^2/\text{s}$ Fluid viscosity Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B₂₅≥75 Weight 2,7 Kg

ORDERING CODE

AM

Modular valve

5

CETOP 5/NG10

UP

Piloted check valve

**

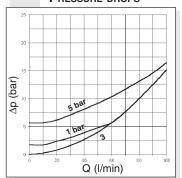
Control on lines A / B / AB

Minimum opening pressure

1 = 1 bar

5 = 5 bar

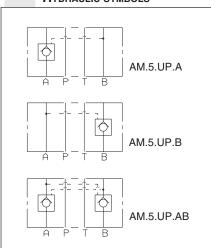
**


00 = No variant

V1 = Viton

5

Serial No.


PRESSURE DROPS

Curve n. 3 = Piloted side flow

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out a fluid temperature of 50°C.

HYDRAULIC SYMBOLS

AM.5.VM... / AM.5.VI...

CMP.20	BFP CARTRIDGE CATALOGUE
CMP.30	BFP CARTRIDGE CATALOGUE
SCREWS AND STUDS	Ch. IV page 35

ORDERING CODE

ΑM

Modular valve

CETOP 5/NG10

VM = Maximum pressure VI = Maximum crossline relief

Adjustment on the lines

**

AM.5.VM Version = A / B / P / AB AM.5.VI Version = A / B / AB

Type of adjustment

M = Plastic knob C = Grub screw

*

Setting ranges at port A/B/P

CMP 30 (AM.5.VM only)

CMP 20 (AM.5.VI only)

1 = max. 50 bar2 = max. 140 bar

1 = max.50 bar(white spring) 2 = max. 140 bar (yellow spring) 3 = max. 250 bar (green spring)

setting curve.

3 = max. 350 bar

Setting ranges at port B

Omit if the setting is same as that at port A

CMP 30 (AM.5.VM only) CMP 20 (AM.5.VI only) 1 = max.50 bar

1 = max.50 bar2 = max. 140 bar 3 = max. 350 bar

2 = max. 140 bar 3 = max. 250 bar (white spring) (yellow spring) (green spring)

AM.5.VM... / AM.5.VI... MODULAR

MAX. PRESSURE VALVES CETOP 5

on T; AM.5.VM.P, on single P line,

with drainage on T; AM.5.VI, on sin-

gle A or B lines, and on double A and

B lines, with crossed drainage on ei-

ther A or B (see hydraulic symbols).

Three spring types can be fitted on all

versions, with calibrated ranges as

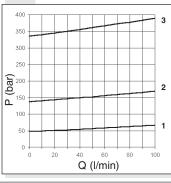
Piloted operation cartridge type CMP.30 is used on versions AM.5.VM and AM.5.VM.P (see ordering code), while on version AM.5.VI direct acting cartridge type CMP.20 is used instead.

For the minimum permissible setting pressure depending on the

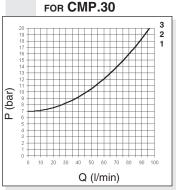
spring, see the minimum pressure

shown in the unit specifications.

**

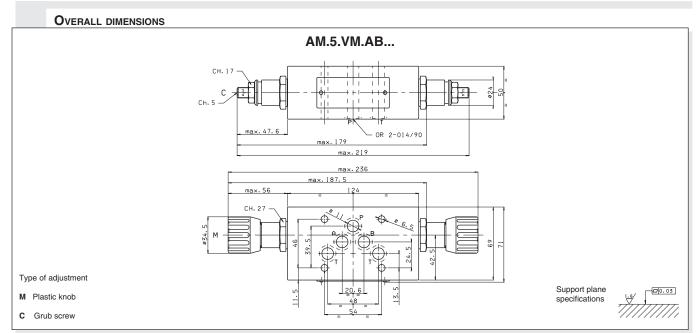

*

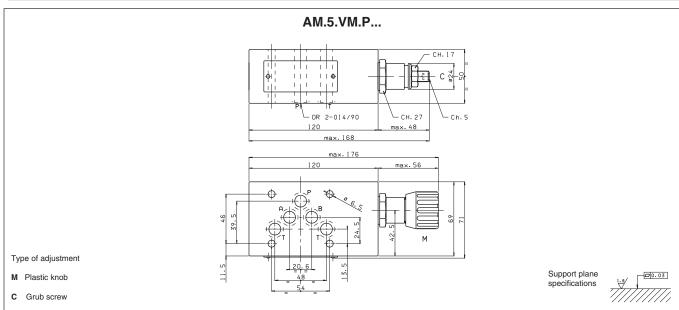
00 = No variant V1 = Viton

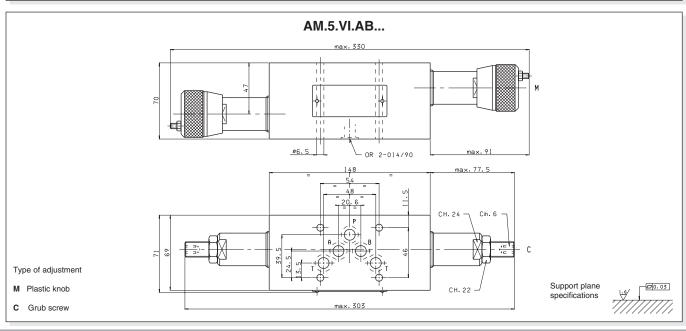

3

Serial No.

PRESSURE - FLOW RATE FOR CMP.30


MINIMUM SETTING PRESSURE FOR CMP.30




Max. operating pressure 350 bar Setting ranges: spring 1 50 bar 140 bar spring 2 350 bar spring 3 Max. flow 80 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C class 10 in accordance Max. contamination level with NAS 1638 with filter β_{cr}≥75 Weight AM.5.VM.A/B/P... 2,5 Kg Weight AM.5.VM.AB... 2,7 Kg 5,7 Kg Weight AM.5.VI.A/B... Weight AM.5.VI.AB... 5,9 Kg

AM.5.CP...

CMP.20... BFP CARTRIDGE CATALOGUE

Ch. IV page 35 SCREWS AND STUDS

AM.5.CP... MODULAR BACK PRESSURE VALVES CETOP 5

Back pressure valves type AM.5.CP are direct acting damped maximum pressure in-line valves fitted with bypass non-return valves. They are obtainable within the adjustable range 2 ÷ 250 bar.

Adjustment is by means of a grub screw or a plastic knob, on ports A or B (single), or on AB double.

The cartridge is direct acting type

These valves are especially used on vertical working cylinders with dragging loads.

For the minimum permissible setting pressure depending on the spring, see the minimum pressure setting curve

Max. operating pressure 350 bar Setting ranges: spring 1 30 bar 140 bar spring 2 spring 3 250 bar Max. flow 80 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm²/s -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B_{or}≥75 Weight AM.5.CP.A/B... 5,3 Kg Weight AM.5.CP.AB... 7,2 Kg

ORDERING CODE

ΑM

Modular valve

5

CETOP 5/NG10

CP

Back pressure valve

**

Control on lines A / B / AB

*

Type of adjustment

M = Plastic knob

C = Grub screw

*

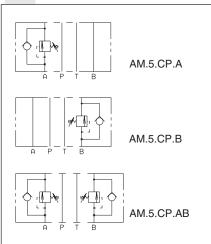
Setting ranges

1 = max. 30 bar (white spring)

2 = max. 140 bar (yellow spring)

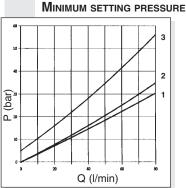
3 = max. 250 bar (green spring)

**

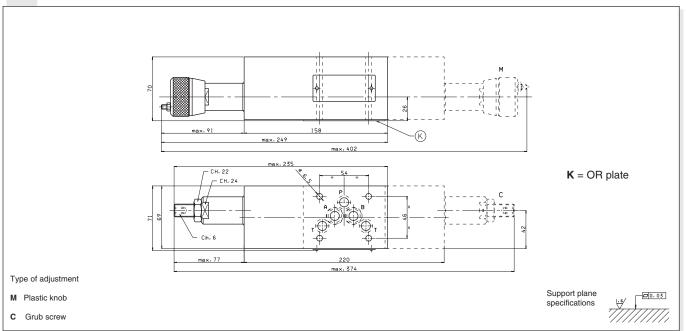

3

00 = No variant

V1 = Viton


Serial No.

HYDRAULIC SYMBOLS



PRESSURE - FLOW RATE 220 -(þar) 0100 Q (l/min)

Curves n° 1 - 2 - 3 = setting ranges

OVERALL DIMENSIONS

AM.5.VR...

CVR.20... BFP CARTRIDGE CATALOGUE

SCREWS AND STUDS Ch. IV PAGE 35 These pressure reducing valves ensure a minimum pressure variation on the P or A port with changing flow rate up 90 l/min.

Three spring types allow adjustment with the range 7 ÷ 250 bar.

Manual adjustment is available by a grub screw or plastic knob.

The RELIEVING SYSTEM inside the valve AM.5.VR allows the passage from the setting pressure line to T line of the flow through the valve to avoid the increasing of pressure in the reduced-pressure line by diverting exceeding flow to reservoir.

A by pass module with check valve for free flow from A to AR port (see hydraulic symbol) is available.

aron WITH RELIEVING - PILOT OPERATED CETOP 5

Max. operating pressure 350 bar Setting ranges: spring 1 60 bar spring 2 120 bar

250 bar

0,5 ÷ 0,7 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C ÷ 75°C

Max. contamination level class 10 in accordance

Weight 3,73 Kg Weight by-pass version 6,56 Kg

ORDERING CODE

AM

Modular valve

5

CETOP 5/NG10

VR

Pilot operated pressure reducing valve with relieving

Control on lines

P = Drain on TA = Drain on T

D = Drain on B reduct pressure on A

*

Drain connection

E = External (only for control on the P line)

I = Internal (Standard)

В

Version with by-pass on line A only

Omit if not required

Type of adjustment

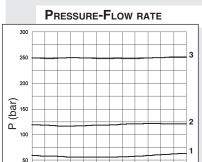
M = Plastic knob

C = Grub screw

Setting ranges

1 = max. 60 bar (white spring)

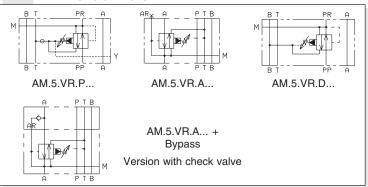
2 = max. 120 bar (yellow spring)


3 = max. 250 bar (green spring)

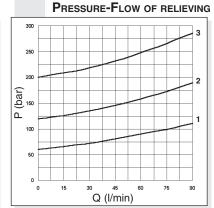
**

00 = No variant

V1 = Viton

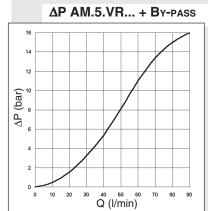

1 Serial No.

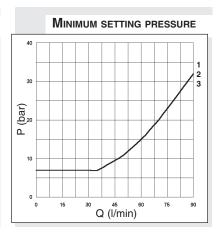



spring 3 Maximum allowed Δp pressure between the inlet and outlet pressure 150 bar Max. flow 90 l/min Draining on port T Ambient temperature -25°C ÷ 60°C with NAS 1638 with filter B₂₅≥75

HYDRAULIC SYMBOLS

AM.5.VR... MODULAR PRESSURE REDUCING VALVES


To change valves AM.5.VR.P... from internal to external drainage it is necessary:


- screw out the plug on the Y port
- screw out the plug T.C.E.I. M8x1 from the body
- screw in a screw S.T.E.I. M6
- rescrew the T.C.E.I. M8x1 plug on the body

NOTE: the external draining can be used as a piloting line (please, concta our Technical Service for other informations)

Curves n° 1 - 2 - 3 = setting ranges

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at a fluid temperature of 50°C.

OVERALL DIMENSIONS

AM.5.VR.P... / AM.5.VR.D... ma× 197 9 CH 17 OR 2-014/90 4.5 131 ma× 61.5 20.6 ma× 70 48 AM.5.VR.A... + BYPASS by-pass (opzionale) 20 CH 24 OR 2-014/90 4.5 max 61.5 131

Type of adjustment

B By-pass (optional)

(if ordered separately)

Ordering code: V89.46.0000

- M Plastic knob
- C Grub screw

Support plane specifications

20.6

48

ma× 70

AM.5.VS...

CVS.20... BFP CARTRIDGE CATALOGUE SCREWS AND STUDS

Ch. IV PAGE 35

AM.5.VS... MODULAR PRESSURE SEQUENCING VALVES CETOP 5

The sequence valve are used to assure that a secondary circuit is pressurized when the setting pressure with changing flow to 90 l/min (see diagram).

Three spring types allow adjustment within the range 7 ÷ 250 bar. Manual adjustment is available by a grub screw or plastic knob.

The cartridge used is the "CVS" type.

Max. operating pressure 350 bar Setting ranges: 60 bar spring 1 spring 2 120 bar spring 3 250 bar Max. flow 90 l/min Draining on port T $0.5 \div 0.7 \text{ l/min}$ Mineral oils DIN 51524 Hydraulic fluids Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B₂₅≥75 Weight

ORDERING CODE

AM

Modular valve

5

CETOP 5/NG10

VS

Sequencing valve

Drain connection

E = External

I = Internal (Standard)

Type of adjustment

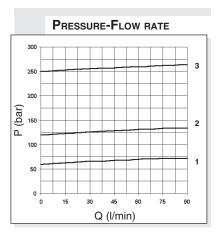
M = Plastic knob

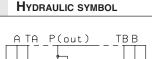
C = Grub screw

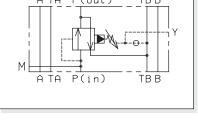
Setting ranges

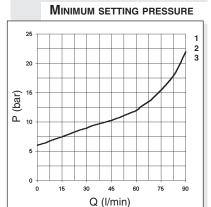
1 = max. 60 bar (white spring)

2 = max. 120 bar (yellow spring)

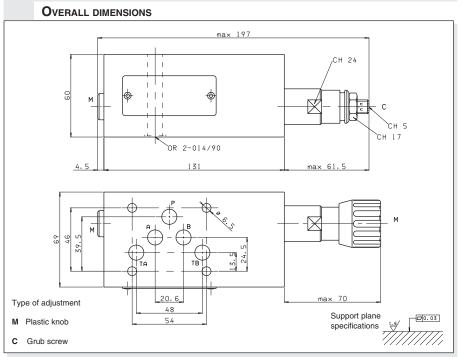

3 = max. 250 bar (green spring)


1


00 = No variant


V1 = Viton

Serial No.


Curves n° 1 - 2 - 3 = setting ranges

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out a fluid temperature of 50°C.

To change valves AM.5.VS... from internal to external drainage it is necessary:

- screw out the plug on the Y port
- screw out the plug T.C.E.I. M8x1 from the body
- screw in a screw S.T.E.I. M6
- rescrew the T.C.E.I. M8x1 plug on the body

NOTE: the external draining can be used as a piloting line (please, contact our Technical Service for other informations)

AM.5.SH...

SH.03... BFP CARTRIDGE CATALOGUE
SCREWS AND STUDS CH. IV PAGE 35

AM.5.SH... MODULAR SHUTTLE VALVES CETOP 5

Modular valves type AM.5.SH are actuator load pressure selecting units, as they are fitted with an integral shuttle valve cartridge which allows taking of the highest pressure signal to the external port via displacement of a ball. They are usually employed to signal the actuator load to the pressure compensator of a load sensing pump, or for the command of fail-safe brakes. For seat overall dimensions

see cartridge shuttle type SH.03.

Max. operating pressure 350 bar Max. flow at the cartridge 3 l/min 80 l/min Max. flow at ports A/B/P/T Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ 2,1 Kg Weight Cartridge tightening torque 20÷30 Nm/2÷3 Kgm

ORDERING CODE

AM

Modular valve

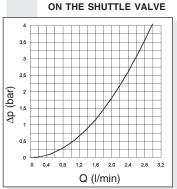
5

CETOP 5/NG10

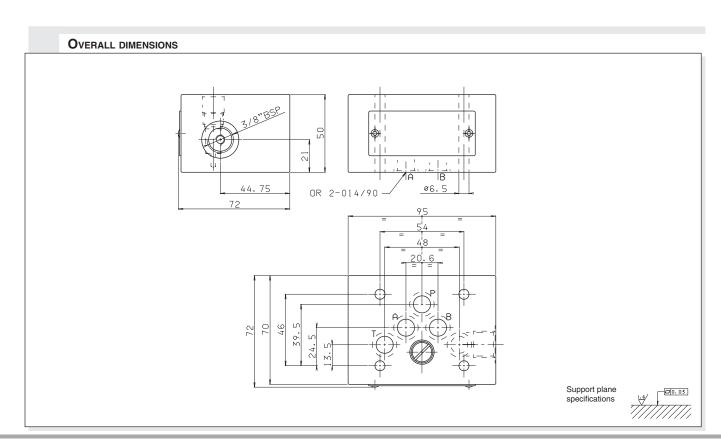
SH

Cartridge shuttle

**


1

00 = No variant


V1 = Viton

Serial No.

PRESSURE DROPS (ΔP) ON THE SHUTTLE VALVE

AM.5.QF...

SCREWS AND STUDS

Ch. IV page 35

AM.5.QF... MODULAR FLOW REGULATOR CETOP 5

AM.5.QF type one way non-compensated throttle valve are fitted with an O-Ring mounting plate which allows its assembly for either input or output regulation. Adjustment is obtained by means of a grub screw or a plastic knob. They are available in the four regulating configurations shown in the hydraulic diagrams.

These valves are supplied with related hydraulic scheme. In case of inversion of rated flow direction, turn valve 180° right or left (attention: in this case the label will appear upside down with A and B inverted).

Max. operating pressure 350 bar Max. pressure adjustable 250 bar Flow rate regulation on 9 screw turns Max. flow 80 l/min Mineral oils DIN 51524 Hydraulic fluids Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ Weight 3,7 Kg

ORDERING CODE

AM

Modular valve

5

CETOP 5/NG10

QF

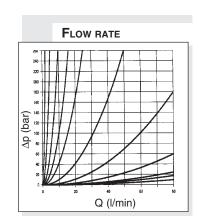
Non compensated throttle valve

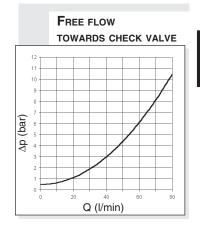
Control on lines

A/B/P/AB

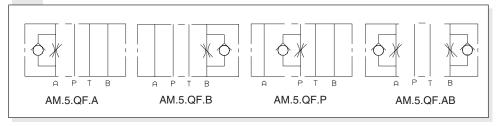
Type of adjustment M = Plastic knob

C = Grub screw

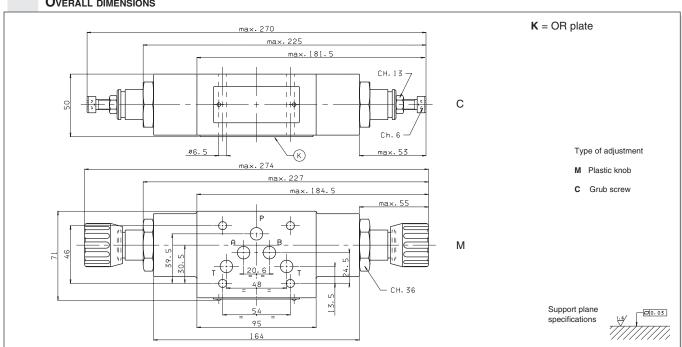

**


00 = No variant

V1 = Viton


4

Serial No.



HYDRAULIC SYMBOLS

OVERALL DIMENSIONS

AM.88... MODULAR COMPENSATED FLOW CONTROL ASSEMBLY CETOP 5

This is an intermediate block (AM.88) for modular mounting of one or two compensated flow rate regulators QC.3...

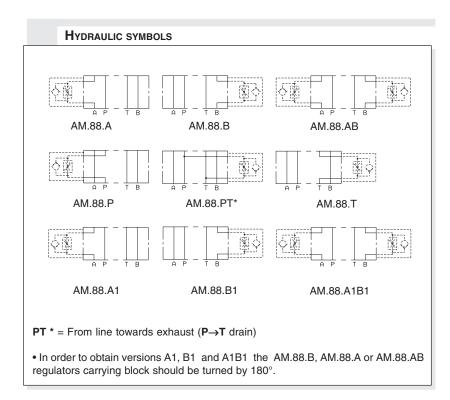
The flow regulator type QC32 must be ordered separately.

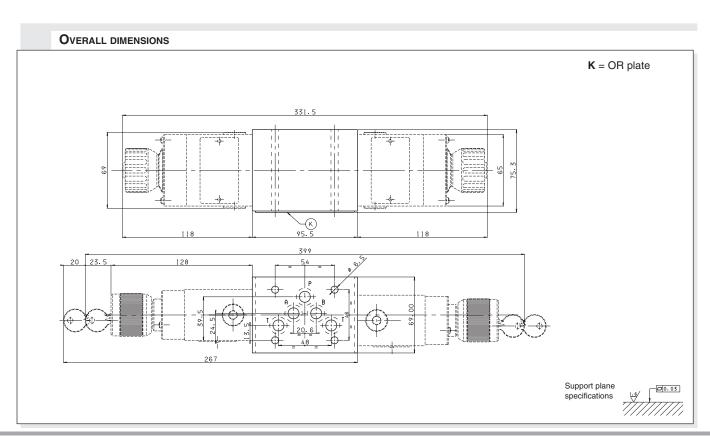
AM.88			
QC.3.2	Ch. III page 2		
SCREWS AND STUDS	Ch. IV page 35		

ORDERING CODE

AM Modular valve

Size


** Cont


88

Control on lines
A/B/P/T/PT*/AB
For A1 / B1 / A1B1
see table "Hydraulic symbols"

** **00** = No variant **V1** = Viton

3 Serial No.

A.88	
"A16" DC coils	Ch. I page 35
STANDARD CONNECTORS	Ch. I page 19
QC.3.2	Ch. III page 2
SCREWS AND STUDS	Ch. IV page 35

A.88... MODULAR FLOW CONTROL VALVES FAST / SLOW ASSEMBLY CETOP 5

() aran

This is a modular assembly ON/OFF solenoid valve which, by fitting a suitable 2 way regulator, allows two speed operation in the same system via an electrical changeover command.

The flow rate regulator type QC.3.2 must be ordered separately.

The limit of use curves have been obtained with the regulator fully closed, and those same limits improve gradually with the opening of the regulator.

 Solenoids used are standard type A16 for DC voltage.

The test have been carried out at operating temperature, with a voltage 10% lower than rated voltage and with a fluid temperature of 50 degrees C. The fluid used was a mineral based oil with a viscosity of 46 mm²/sec at 40 degrees C.

ORDERING CODE

A

Speed control valve

88

Size

**E**)

Electrical operator

120 = Normally open

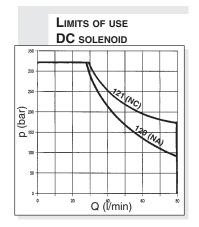
121 = Normally closed See table "Hydraulic symbols"

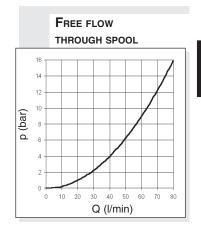
*

Control on lines A/B/P/T (see symbols)

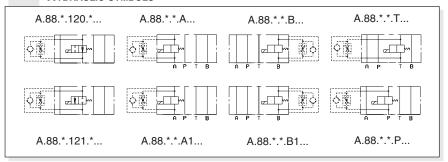
The interface holder "H" must be turned by 180° in order to obtain the **A1** and **B1** versions.

*


Voltage : see tab.1

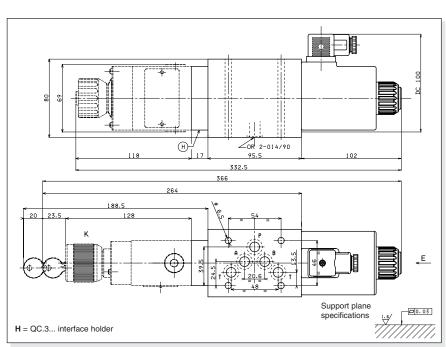

**

Variants: see tab.2


3

Serial No.

HYDRAULIC SYMBOLS



Tab.1 - A16 Coll DC VOLTAGE 12V 115Vac/50Hz 24V M 120Vac/60Hz with rectifier N 48V* Ρ 110V* 230Vac/50Hz Z 102V* 240Vac/60Hz with rectifier 205V***←** X W Without DC coil Voltage codes are not stamped on the plate, their are readable on the coils. * Special voltage

Tab.2 - Variants No variant 00 (connectors as in the drawing) Viton V1 Indicator light X1 Rectifier R1 Cable gland "PG11" S1 Valve without connector (coil)

XR

Indicator light + rectifier

AM.5.RGT... MODULAR VALVES FOR REGENERATIVE CIRCUIT CETOP 5

This modular system produces a regenerative circuit to increasing the actuator (differential cylinder) exit speed as shown in the diagram. In particular, if a cylinder is used with a 2:1 ratio for operating surfaces, the exit and re-entry speeds are the same.

Max. operating pressure 350 bar Max. flow at port A/B/P/T 70 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C \div 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B₂₅≥75 Weight 2,1 Kg

AM.5.RGT...

SCREWS AND STUDS

Ch. IV page 35

ORDERING CODE

AM

Modular valve

5

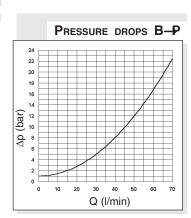
CETOP 5/NG10

RGT

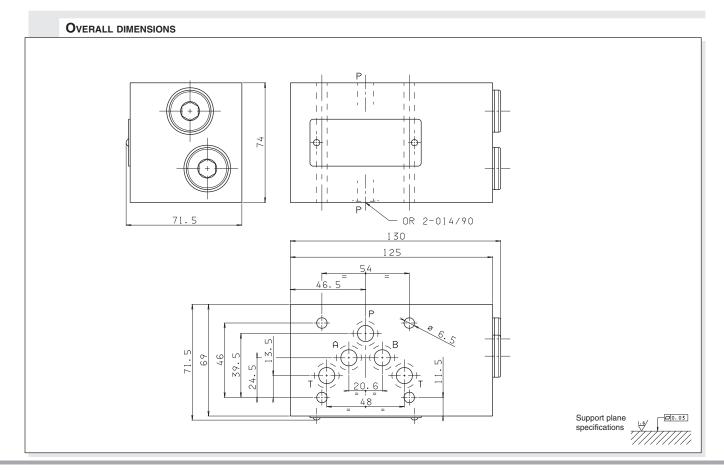
For regenerative circuit

Α

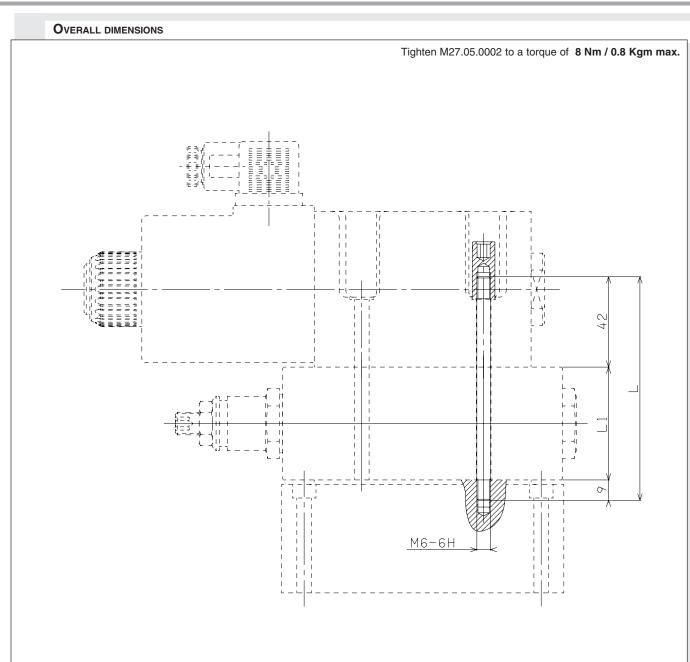
Size of check valves 1/2"BSP


1

Opening pressure 1 bar


00 = No variant V1 = Viton

1


Serial No.

HYDRAULIC SYMBOL A TB ΑP B

SCREWS CODE T.C.E.I	L	L1	COMPOSITION		Qty.
Q26.07.4090	40		AD5		4
Q26.07.4098	90	50	AD5 + 1 AM5 (ISO)		4
Q26.07.4301	100	60	AD5 + AM5VR		4
Q26.07.4302	110	70	AD5 + AM5VI		4
Q26.07.4099	120	80	AD5 + A88		4
STUDS CODE	L	L1	COMPOSITION	SPECIAL NUTS CODE	Qty.
M80.15.0004	150	100	AD5 + 2 AM5 (ISO)	M27.05.0002	4
M80.15.0012	160	110	AD5 + AM5VR + AM5 (ISO)	п	4
M80.15.0010	180	130	AD5 + A88 + AM5 (ISO)	п	4
M80.15.0006	190	140	AD5 + A88 + AM5VR	п	4
M80.15.0011	200	150	AD5 + 3 AM5 (ISO)	п	4

ORDERING CODE

Modular valve

CETOP 7/NG16

Control on lines

Opening pressure

00 = No variant

A / B / AB

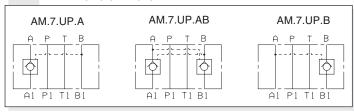
2 = 2 bar

Piloted check valve

AM.7.UP... MODULAR

PILOT OPERATED CHECK VALVES CETOP 7

() aran

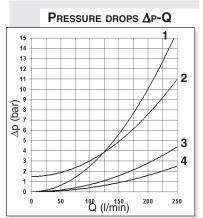

AM.7.UP type modular check valves allow free flow in one direction by lifting a seated poppet, while in the opposite direction the fluid can return by means of a small piston piloted by the other line pressure (piloted side).

The cast valve body allows limited pressure drops during the fluid flow through the various P/A/B/T lines.

They are available on single A or B lines, and on double A and B lines (see hydraulic symbols).

Max. operating pressure 350 bar Opening pressure 2 bar Piloting ratio 1:11,7 250 l/min Max. flow Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -20°C ÷ 80°C Ambient temperature -20°C ÷ 50°C Max. contamination level class 10 in accordance with NAS 1638 with filter B_{os}≥75 7.2 Ka Weiaht

HYDRAULIC SYMBOLS

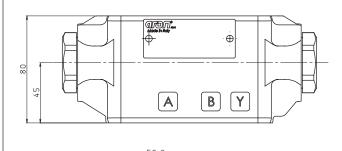

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out a fluid temperature of 50°C.

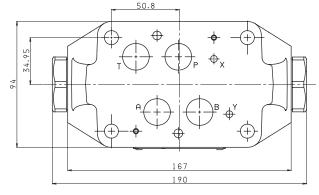
$$1 = \begin{array}{c} A1 \rightarrow A \\ B1 \rightarrow B \end{array}$$

$$2 = \frac{A \rightarrow A1}{B \rightarrow B1} \quad \bigcirc$$

$$3 = {A1 - A (AM.7.UP.B) \over B1 - B (AM.7.UP.A)}$$

$$4 = \frac{P1 \rightarrow T}{T1 \rightarrow P}$$

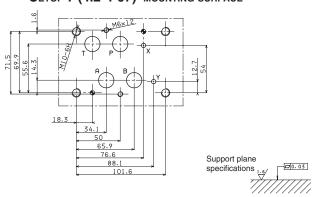




OVERALL DIMENSIONS

V1 = Viton

Serial No.


• Valve fixing:

n° 4 screws T.C.E.I. M10 - Tightening torque 40 Nm n° 2 screws T.C.E.I. M6 - Tightening torque 8 Nm The longer of the screws depends on the type of assembly used. Fixing screws UNI 5931 with material specifications 12.9

· Seals:

n° 4 pieces OR 2-118/90sH PARKER (type 130) n° 2 pieces OR 2-013/90sH PARKER (type 2043)

CETOP 7 (4.2-4-07) MOUNTING SURFACE

AM

7

UP

1

AM.7.QF...

ORDERING CODE

Modular valve

7 CETOP 7/NG16

AM

**

1

QF Non compensated throttle valve

** Control on lines

A = meter out control on line A

AB = meter out control on lines A and B

B = meter out control on line **B**

Type of adjustment

M = Plastic knob

 $\mathbf{C} = \mathsf{Grub} \ \mathsf{screw}$

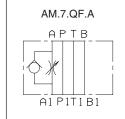
00 = No variant

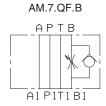
V1 = Viton

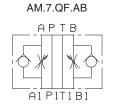
Serial No.

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out a fluid temperature of 50°C.

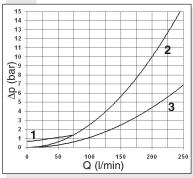
AM.7.QF... MODULAR FLOW REGULATOR CETOP 7

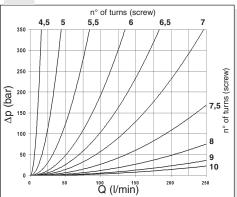



AM.7.QF type one way non-compensated throttle valve are fitted with an O-Ring mounting plate which allows its assembly for either input or output regulation. Adjustment is obtained by means of a grub screw. They are available in the three regulating configurations shown in the hydraulic diagrams.

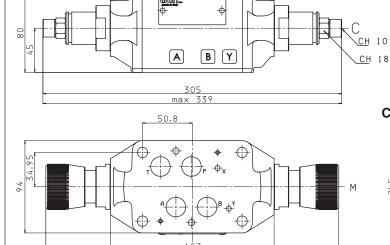

All configurations have a built in check valve that allows reserve free flow.

Max. operating pressure 350 bar Flow rate regulation on 10 screw turns Max. flow 250 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -20°C ÷ 80°C -20°C ÷ 50°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter B₂₅≥75 Weight AM.7.QF for A or B versions 7,35 Kg Weight AM.7.QF for AB version 7,7 Kg


HYDRAULIC SYMBOLS



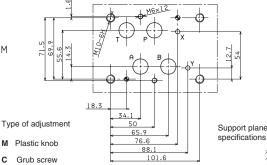
PRESSURE DROPS AP-Q


- 1 = Regulator closed A-A1 / B-B1
- 2 = Regulator open A-A1 / B-B1
- 3 = Without regulator A-A1 (AM.7.QF.B) B-B1 (AM.7.QF.A)

REGULATED FLOW RATE

Regulated flow rate depending on No. of turns: from **4,5** to **10** turns (unscrewing).

OVERALL DIMENSIONS


Valve fixing:

 $\,$ n° 4 screws T.C.E.I. M10 - Tightening torque 40 Nm n° 2 screws T.C.E.I. M6 - Tightening torque 8 Nm The longer of the screws depends on the type of assembly used. Fixing screws UNI 5931 with material specifications 12.9.

Seals:

n° 4 pieces OR 2-118/90sH PARKER (type 130) n° 2 pieces OR 2-013/90sH PARKER (type 2043)

CETOP 7 (4.2-4-07) MOUNTING SURFACE

File: AM70F014 E IV • 37 00/2006/e

5

TECHNICAL CATALOGUE ARON 2010

ABBREVIATIONS

	ADDREVIATIONS
AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	LOW PRESSURE CONNECTION
С	Stroke (MM)
CH	A CROSS FLATS
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I%	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
P	Load pressure (bar)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	Pump flow (L/min)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

www.aron.it - sales@brevinifluidpower.com

General terms and conditions of sale: see website www.aron.it

Cartridge valves iso 7368 (din 24342)

aron

2/2 CARTRIDGE VALVES	Ch. V page 2
2/2 LOGIC ELEMENTS	Ch. V page 3
COVERS FOR LOGIC ELEMENTS	Ch. V page 3
Max. Pressure valves - Covers	Ch. V page 9
PLATE MOUNTING COVERS	Ch. V page 9
KRA.16/25	Ch. V PAGE 12
Proximity	Ch. V page 15

CARTRIDGE VALVES
CARTRIDGE SOLENOID VALVES
VALVE
CARTRIDGE SOLENOID VALVES

(SEE BREVINI FLUID POWER CARTRIDGE CATALOGUE)

File: 05TA E V • 1 06/2010/e

2/2 LOGIC ELEMENTS AND COVERS		
KEL.16/25	Ch. V page 3	
KEC.16/25	CH. V PAGE 3/6/7/8	
HYDRAULIC MOUNTING SCHEM	MES CH. V PAGE 4	
NG16/NG25 SEATS	Ch. V page 5	
KEC.16/25 WITH CMP	Ch. V page 9/10	
C.*.P.16/25	Ch. V page 9/11	
KRA.16/25	Ch. V page 12	
KRA.16/25 + AD.3.V	Ch. V page 14	
PROXIMITY FOR KRA	Ch. V page 15	

2/2 Cartridge valves logic elements according to ISO 7368 (din 24342)

ARON cartridge valves are basically composed of a cover and an operating unit insert in the ISO 7368 (DIN 24342) mounting frame. Each cartridge valve is characterized by 2 main way for the nominal flow (up to 350 l/min).

Nominal size (max. diameter)	16mm / 25mm
Max. opening pressure	350 bar
Max. nominal flow rate NG16	150 l/min
Max. nominal flow rate NG25	350 l/min
Fluid temperature	-20°C ÷ 75°C
Max. contamination level class 1	0 in accordance
with NAS 1638 v	with filter B ₂₅ ≥75

By combining the various covers, op-

erating units and connections within the block, many different functions can be obtained like: direct control, non-return, hydraulically piloted non-return, pressure control, flow rate regulation, as well as a combination of these same functions.

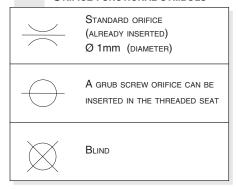
Thanks to their design features and operational flexibility, cartridge valves can be used to:

- speed-up machine cycles, and therefore increase productivity and efficiency (better response time compared to traditional valves);
- ensure minimum thermal dissipation (tanks to the passageway dimensions);
- reduce the hydraulic plant weight (tanks to the compact functions block);
- reduce to a minimum any internal leakages;
- provide ease of installation and serving.

The logic units 2/2 (Fig. 1) are formed by a cover (1), a functional unit (2), a spacer (3), a closure spring (4) and a guide bush (5) for each functional unit. Covers can be changed according to the required application and the functional unit can be combined with different springs in order to obtain various opening pressure.

Covers

Covers serve to enclose the functional unit and to house the piloting ports and any incorporated valves or manual adjustment devices. Inside the cover are housed also the seats for the calibrated orifice used to optimize the valve opening/closed response time in according to the type of hydraulic system being implemented.


CETOP 3 interface covers are available, ready to accept solenoid valves or other modular valves for the implementation of particular control functions.

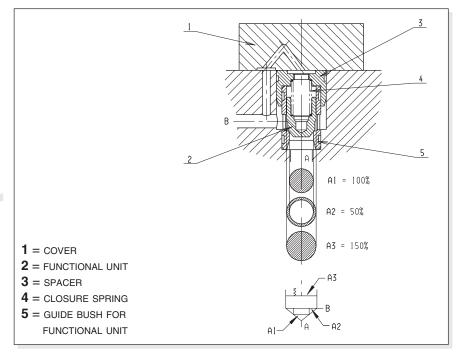

The maximum allowed pressure is a function of the flow rate (max.400 bar).

Fig. 1 - AREA RATIO

Α	Main flow			
В	Main flow	l		
Х	EXTERNAL PILOTING			
Z 1	EXTERNAL PILOTING			
Z2	EXTERNAL PILOTING			
Υ	Drainage			
A 1	A PORT EFFECTIVE CROSS SECTION			
A2	B PORT EFFECTIVE CROSS SECTION			
A3	SPRING CHAMBER EFFECTIVE CROSS SECTION			

ORIFICE FUNCTIONAL SYMBOLS

The logic unit operates as a function of the pressures acting on the relevant areas, and different opening pressures are obtained, depending on the dimensions of these areas.

A description of how to interpret the ARON cartridge opening ratios is as follows:

- there are three relevant areas A1, A2, A3;
- area A1 is taken to represent 100%, i.e. it is the reference area;
- area A2, when a 2:1 ratio is shown, is equal to 50% of area A1 and all the other ratios shown in the Table 2 can be calculated on this basis.

As consequence of these area ratios the are different opening pressures whether proceeding from $A \rightarrow B$ or from $B \rightarrow A$.

ORDERING CODE

KEL

Logic element 2/2

**

16 = NG16 **25** = NG25

*

Function: see table 1 Areas ratio:

 $\mathbf{U} = 1:1$

S = 12.5 : 1

B = 2 : 1

(for version with drilled poppet see CF variant)

F = 2 : 1 **R** = 2 : 1

*

Opening pressure (bar) (Tab.1 pressure values) (Tab.2 spring's colour and code)

**

Calibrated orifices:

00 = blind

08 = 0.8 mm

09 = 0.9 mm

10 = 1.0 mm

12 = 1.2 mm

14 = 1.4 mm

**

00 = No variant

V1 = Viton

CF = With drilled poppet only for KEL.**.B...

2

Serial No.

TAB. 1 - SYMBOL, FUNCTION, AREA RATIO AND OPENING PRESSURE

Function	Symbol	Area ratio	Code	Opening pressure (bar)	
				A →B	B →A
Directional (U) (normally used for relief valve)	\$ A3 B	A1 : A3 1 : 1	KEL.*.U.L.00 KEL.*.U.M.00 KEL.*.U.H.00 KEL.*.U.J.00	L = 0.3 M = 1.6 H = 4 J = 9	
Directional (U) with orifice	\$ A3 X B	A1 : A3 1 : 1	KEL.*.U.L.** KEL.*.U.M.** KEL.*.U.H.**	L = 0.3 M = 1.6 H = 4	
Directional (S)	\$ 93 B	A1 : A2 12.5 : 1	KEL.*.S.L.00 KEL.*.S.M.00 KEL.*.S.H.00	L = 0.3 M = 0.6 H = 1.5	L = 4 M = 8 H = 20
Directional (S) with orifice	ж н А	A1 : A2 12.5 : 1	KEL.*.S.L.** KEL.*.S.M.** KEL.*.S.H.**	L = 0.3 M = 0.6 H = 1.5	L = 4 M = 8 H= 20
Directional (B) (normally used for check valve)	\$ A3	A1 : A2 2 : 1	KEL.*.B.L.00 KEL.*.B.M.00 KEL.*.B.H.00	L = 0.5 M = 1 H = 2.5	L = 1 M = 2 H = 5
Flow (F) control	\$ A3	A1 : A2 2 : 1	KEL.*.F.L.** KEL.*.F.M.** KEL.*.F.H.**	L = 0.5 M = 1 H = 2.5	L = 1 M = 2 H = 5
	. ≹ AP .				→B
With sensitized (R) cover	B	A1 : A2 2 : 1	KEL.*.R.L.00 KEL.*.R.M.00 KEL.*.R.H.00 KEL.*.R.J.00	NG16 L = 0.7 M = 1.5 H = 4	NG25 L = 0.6 M = 1.5 H = 3.5 J = 9

TAB. 2 - SPRING'S COLOUR AND CODE

Spring	U		S		B-I	=	R	
type	NG16	NG25	NG16	NG25	NG16	NG25	NG16	NG25
Cod. L Cod. M Cod. H Cod. J	without colour green blue without co	red yellow blue _{olour}	without colour red yellow	red green yellow	without colour red green	red green yellow	without colour red green	red green yellow blue

TAB. 3 - COVERS HYDRAULIC SYMBOLS

Туре	Symbol
KEC.**.RI.**.2 Directional with external piloting	M*- +
KEC.**.CQ.**.2 Directional with stroke adjustment	M* Y Z Z
KEC.**.RC.**.2 Directional with interface NG6	P B A T
KEC.**.PC.**.2 With hydraulic outlet pilot valve	Z1 Y AP X
KEC.**.SH.**.2 With built-in-exchange valve (shuttle)	M*↑ — ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬
KEC.**.SP.**.2 With built-in-exchange valve (shuttle) and interface NG6	MX D B A A A A A A A A A A A A A A A A A A

COVERS FOR LOGIC ELEMENTS

COVERS ORDERING CODE

KEC

Covers for logic element 2/2

**

16 = NG16 **25** = NG25

**

2

Type of cover (see Tab. 3)

RI = Directional with external piloting

CQ = Directional with stroke adjustment

RC = Directional with interface NG6

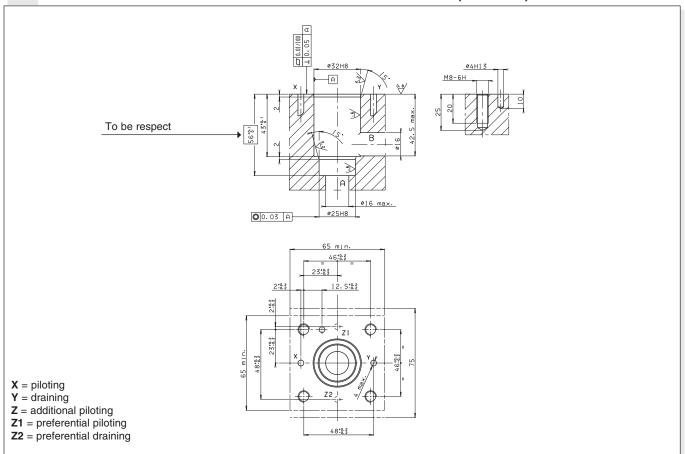
PC = With hydraulic outlet pilot valve **SH** = With built-in-exchange (shuttle)

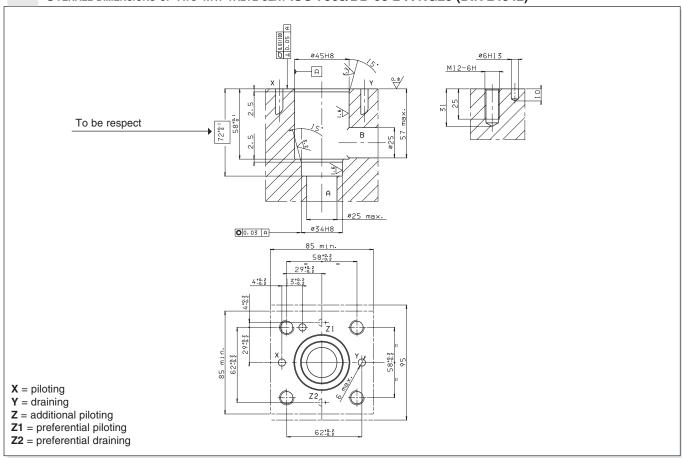
SP = With built-in-exchange and interface NG6

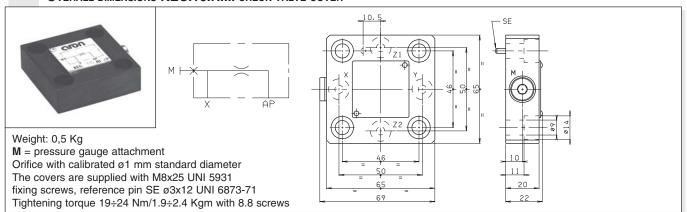
00

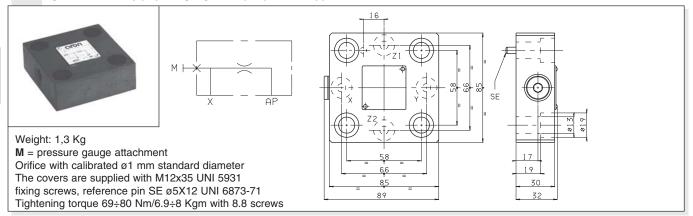
00 = No variant

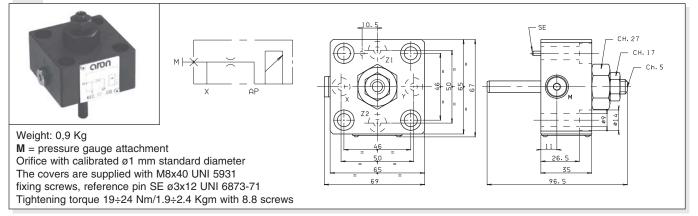
V1 = Viton

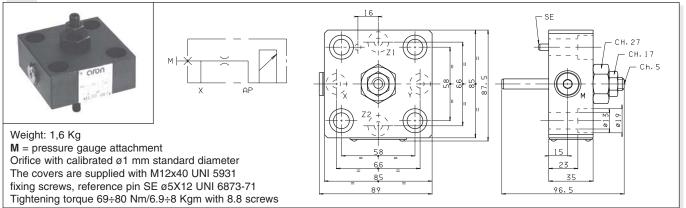

Serial No.


HYDRAULIC MOUNTING SCHEMES FOR KEC COVERS AND KEL LOGIC ELEMENTS KEC.16/25.RI... COVER WITH EXTERNAL PILOTING PORT KEC..RI.. KEC..RI.. $A = External piloting X allows flow in both directions <math>A \rightarrow B$ and $B \rightarrow A$. $B = For rapid sequence safety circuit; <math>A \rightarrow B$ flow is allowed; when pressure reaches X valve closes. KEL..B.. Only for CF variant (KEL.**:B... with drilled poppet), with no KEL..B.. pressure in X it operates as a check valve between A and B. KEC.16/25.CQ... **COVER WITH STROKE LIMITATION** KEC..CQ.. Allows flow regulation in both directions $A \rightarrow B$ and $B \rightarrow A$. By limiting the spool stroke the flow in both direction can be limited. KEL..F.. KEC.16/25.RC... Cover with Interface NG6 AD3.... These covers have one mounting surface preset for a solenoid pilot valve. KEC..RC.. Proper connection of Y and Z2 to the A and/or B ports will allowing piloting of the valve opening and closing functions. KEL..B.. KEC.16/25.PC... COVER WITH HYDRAULIC RELEASE PILOT VALVE KEC..PC.. This is a cover with external piloting to be connected to B port to obtain the standard unit function. Z1 pressure piloting allows flow transfer from B \rightarrow A. Normally, in order to ensure the holding condition the main port B is connected to the load; piloting in Z1 KEL..B.. should be at least 50% of the load pressure in B. KEC.16/25.SH... COVER WITH INTEGRAL CHANGEOVER VALVE KEC..SH.. The logic element closes as function of the larger pressure in X and Z1, selected by the shuttle valve. KEL..B.. KEC16/25.SP... Cover with integral changeover VALVE AND INTERFACE NG6 AD3.... The AP branch of the cartridge valve spring is connected with the pilot valve port. KEC..SP.. External piloting operates from Z2 →A of the pilot valve. An example is shown in the diagram of a type of connection used to keep the conical seat valve closed on both sides (interrupted flow both from $A \rightarrow B$ and from $B \rightarrow A$). KEL..B.. KRA.16/25... COVER WITH ELECTRICAL CONTROL OF THE CLOSED POSITION AND INTERFACE NG6 See cartridge type KRA... next pages


OVERALL DIMENSIONS OF TWO-WAY VALVE SEAT ISO 7368/BA-06-2-A NG16 (DIN 24342)


Overall dimensions of two-way valve seat ISO 7368/BB-08-2-A NG25 (DIN 24342)


OVERALL DIMENSIONS KEC.16.RI... CHECK VALVE COVER


OVERALL DIMENSIONS KEC.25.RI... CHECK VALVE COVER

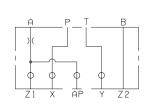
OVERALL DIMENSIONS KEC.16.CQ.. COVER WITH STROKE ADJUSTMENT

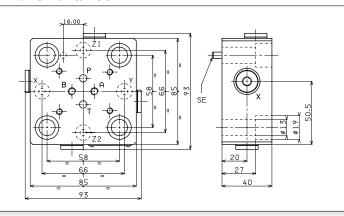
OVERALL DIMENSIONS KEC.25.CQ.. COVER WITH STROKE ADJUSTMENT

OVERALL DIMENSIONS KEC.16.RC... COVER WITH INTERFACE CETOP 3/NG6

22.5 50 80

Weight: 1,2 Kg


M = pressure gauge attachment


Orifice with calibrated ø1 mm standard diameter The covers are supplied with M8x40 UNI 5931

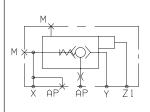
fixing screws, reference pin SE ø3x12 UNI 6873-71 tightening torque 19÷24 Nm/1.9÷2.4 Kgm with 8.8 screws

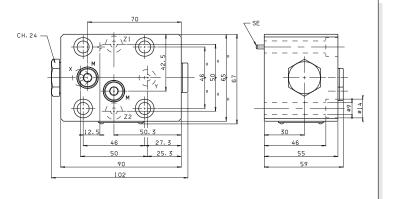
OVERALL DIMENSIONS KEC.25.RC... COVER WITH INTERFACE CETOP 3/NG6

Weight: 1,8 Kg

M = pressure gauge attachment

Orifice with calibrated ø1 mm standard diameter

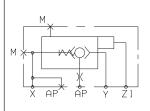

The covers are supplied with M12x45 UNI 5931

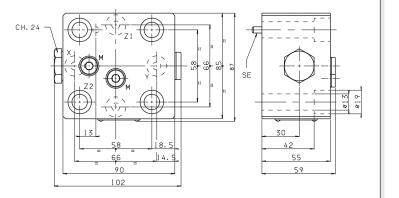

fixing screws, reference pin SE ø5X12 UNI 6873-71

tightening torque 69÷80 Nm/6.9÷8 Kgm with 8.8 screws

OVERALL DIMENSIONS KEC.16.PC... COVER WITH HYDRAULIC OUTLET PILOT VALVE

M = pressure gauge attachment Orifice with calibrated ø1 mm standard diameter


The covers are supplied with M8x60 UNI 5931


fixing screws, reference pin SE ø3x12 UNI 6873-71

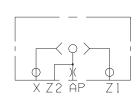
tightening torque 19÷24 Nm/1.9÷2.4 Kgm with 8.8 screws

OVERALL DIMENSIONS KEC.25.PC... COVER WITH HYDRAULIC OUTLET PILOT VALVE

Weight: 2,7 Kg

M = pressure gauge attachment

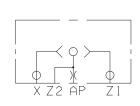
Orifice with calibrated ø1 mm standard diameter

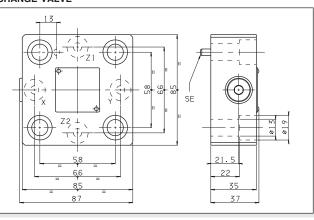

The covers are supplied with M12x60 UNI 5931

fixing screws, reference pin SE ø5X12 UNI 6873-71 tightening torque 69÷80 Nm/6.9÷8 Kgm with 8.8 screws

OVERALL DIMENSIONS KEC.16.SH... COVER WITH BUILT-IN EXCHANGE VALVE

Weight: 0,9 Kg


M = pressure gauge attachment


Orifice with calibrated ø1 mm standard diameter The covers are supplied with M8x40 UNI 5931

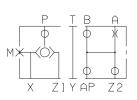
fixing screws, reference pin SE ø3x12 UNI 6873-71 tightening torque 19÷24 Nm/1.9÷2.4 Kgm with 8.8 screws

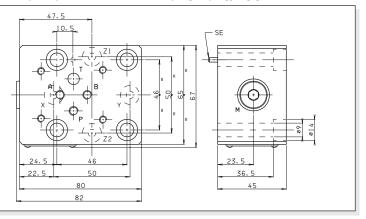
OVERALL DIMENSIONS KEC.25.SH... COVER WITH BUILT-IN EXCHANGE VALVE

Weight: 1,5 Kg

M = pressure gauge attachment

Orifice with calibrated ø1 mm standard diameter


The covers are supplied with M12x40 UNI 5931


fixing screws, reference pin SE ø5X12 UNI 6873-71

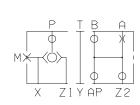
tightening torque 69÷80 Nm/6.9÷8 Kgm with 8.8 screws

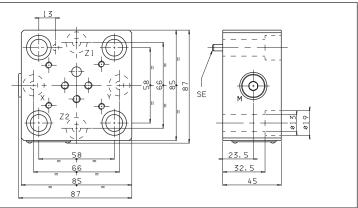
OVERALL DIMENSIONS KEC.16.SP COVER WITH BUILT-IN EXCHANGE VALVE AND INTERFACE CETOP 3/NG6

Weight: 1,4 Kg

M = pressure gauge attachment

Orifice with calibrated ø1 mm standard diameter


The covers are supplied with M8x50 UNI 5931


fixing screws, reference pin SE ø3x12 UNI 6873-71

tightening torque 19÷24 Nm/1.9÷2.4 Kgm with 8.8 screws

OVERALL DIMENSIONS KEC.25.SP COVER WITH BUILT-IN EXCHANGE VALVE AND INTERFACE CETOP 3/NG6

Weight: 2 Kg

M = pressure gauge attachment

Orifice with calibrated ø1 mm standard diameter

The covers are supplied with M12x50 UNI 5931

fixing screws, reference pin SE ø5X12 UNI 6873-71

tightening torque 69÷80 Nm/6.9÷8 Kgm with 8.8 screws

MAX. PRESSURE COVERS				
KEC.16/25 WITH CMP	Ch. V page 10			
C.*.P.16/25	Ch. V page 11			
CETOP 3/NG06	Ch. I page 8			
AD.3.E	Ch. I page 11			
AM.3.VM	CH. IV PAGE 9			
XP.3	CH. VIII PAGE 16			

MAXIMUM PRESSURE CARTRIDGE VALVES

Aron maximum pressure cartridge valves allow control of hydraulic circuit pressures up 400 bar and 350 l/min maximum flow rate (NG25).

Besides the normal manual pressure regulation mode, function like electri-

Nominal size (max. diameter)

Max. operating pressure

Maximum nominal flow rate NG16

Maximum nominal flow rate NG25

Setting ranges

16mm / 25mm

400 bar

150 l/min

350 l/min

15 ÷ 400 bar

cal command for discharge to drain, remote control, proportional pressure control or electrically selected dual pressure levels are also available.

The CETÓP 3/NG6 interface allows the mounting of a AD.3.E... valve. A standard cartridge valve DIN 24342 is used. A cover not according to DIN rules is also available.

The valve response specification may be modified by selection of different internal orifices according to the required application. The standard version has calibrated orifices of \mathcal{O} 1 mm in X and AP.

DIN STANDARDS COVER ORDERING CODE

KEC

**

DIN standards cover

** **16** = NG16

25 = NG25

Type of cover

Type of cover

ME = Max. pressure valve with interface CETOP 3

MP = Max. pressure valve

UE = Exclusion valve with interface CETOP 3

UN = Exclusion valve

SL = Sequencing valve

Setting ranges

 $1 = 15 \div 45$ bar (white spring)

 $2 = 15 \div 145$ bar (yellow spring)

 $3 = 60 \div 400$ bar (green spring)

Type of adjustment

M = Plastic knob

C = Grub screw

00 = No variant

V1 = Viton

Serial No.

PLATE MOUNTING COVERS ORDERING CODE

C*P

**

3

M = Cover with max. pressure valve

U = Cover with exclusion valve

S = Cover with sequencing valve

*

E = Presetting for solenoid valve (Omit if not required)

**

16 = NG16

25 = NG25

*

Type of adjustment

M = Plastic knob

C = Grub screw

(*)

Setting ranges

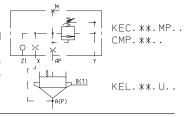
 $1 = 15 \div 45$ bar (white spring)

 $2 = 15 \div 145$ bar (yellow spring)

 $3 = 60 \div 400$ bar (green spring)

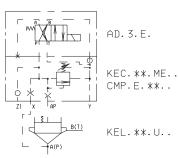
**

2

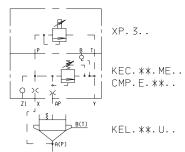

00 = No variant

V1 = Viton

Serial No.

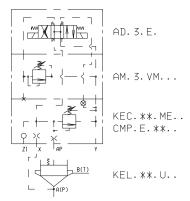

MANUAL PRESSURE REGULATION

This regulation facility is incorporated in the cartridge closing cover. A Z1 port is provided on the cover for remote piloting via directional or pressure control valves.

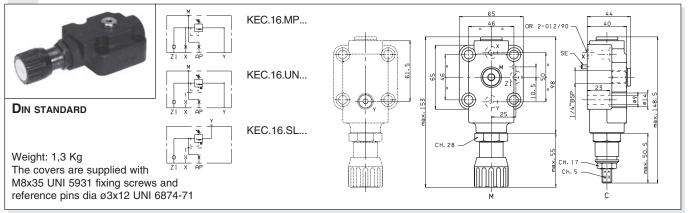

MANUAL PRESSURE REGULATION AND ELECTRICAL COMMAND FOR DISCHARGE TO DRAIN

This arrangement uses an electrically controlled valve type AD3E15.. which normally, in the de-energized position, allows discharge to drain of the controlled flow. When energized, the system operates at the pressure set on the piloting unit incorporated in the closing cover.

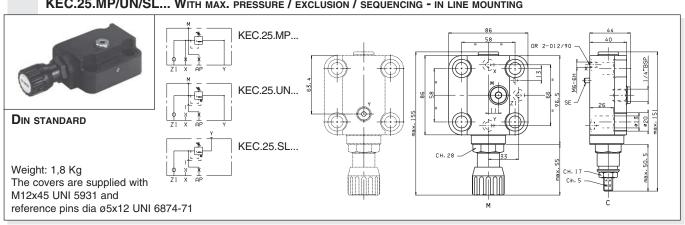
MANUAL REGULATION AND PROPORTIONAL CONTROL OF THE PRESSURE

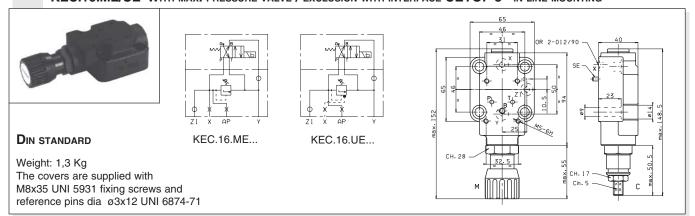

This arrangement uses a proportional pressure valve type XP3.. as the pilot, which allows proportional regulation of the controlled system pressure as a function of an electrical command signal.

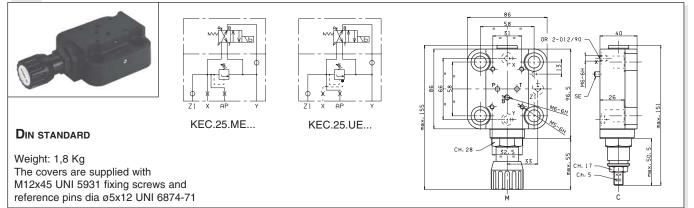
MANUALLY ADJUSTABLE AND ELECTRICALLY SELECTED TWO LEVEL PRESSURE UNIT


This arrangement uses a dual solenoid electrically controlled valve type AD3E02C.. and a modular maximum pressure valve type AM3VMA... which, when combined, allow implementation of an electrically selected two level pressure system.

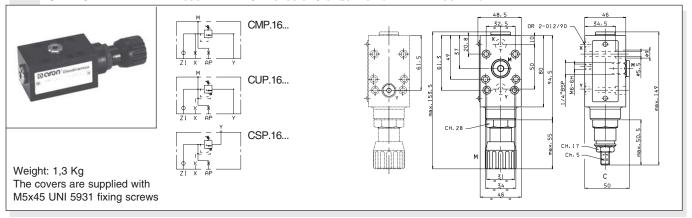
Normally, with the solenoid valve deenergized, the controlled flow is discharged to drain.



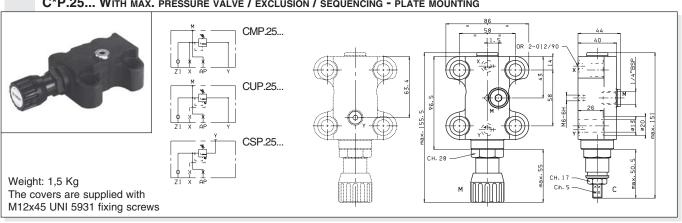

KEC.16.MP/UN/SL... WITH MAX. PRESSURE VALVE / EXCLUSION / SEQUENCING - IN LINE MOUNTING

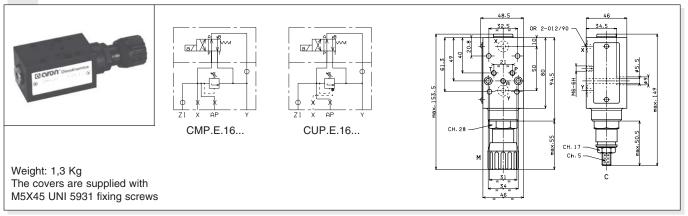

KEC.25.MP/UN/SL... WITH MAX. PRESSURE / EXCLUSION / SEQUENCING - IN LINE MOUNTING

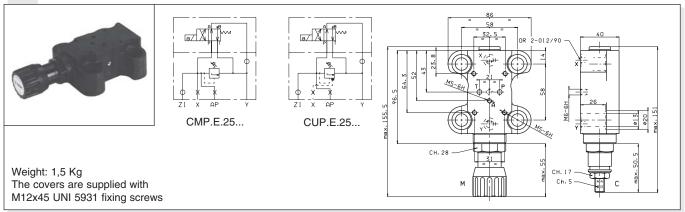
KEC.16.ME/UE WITH MAX. PRESSURE VALVE / EXCLUSION WITH INTERFACE CETOP 3 - IN LINE MOUNTING



KEC.25.ME/UE WITH MAX. PRESSURE VALVE / EXCLUSION WITH INTERFACE CETOP 3 - IN LINE MOUNTING




C*P.16... WITH MAX. PRESSURE VALVE / EXCLUSION / SEQUENCING - PLATE MOUNTING


$C^*P.25...$ With Max. Pressure valve / exclusion / sequencing - plate mounting

C*P.E.16 WITH MAX. PRESSURE VALVE / EXCLUSION WITH INTERFACE CETOP 3 - PLATE MOUNTING

C*P.E.25 WITH MAX. PRESSURE VALVE / EXCLUSION WITH INTERFACE CETOP 3 - PLATE MOUNTING

KRA.16/25				
OVERALL DIMENSIONS	Ch. V page 13			
KRA.16/25 + AD.3.V	Ch. V page 14			
PROXIMITY FOR KRA	Ch. V page 15			
AD.3.V	Ch. I page 13			
"D15" DC coils	Ch. I page 18			
L.V.D.T. FOR AD.3.V	Ch. I page 21			
STANDARD CONNECTORS	Ch. I page 19			

KRA.16/25... CARTRIDGE VALVES WITH ELECTRICAL **Aaron** POSITION CONTROL NG16 / NG25

This valve series is used in those applications where monitoring of the "actual" valve position is required for managing machine safety cycles as required by current accident prevention legislation. Typical examples of applications where this product is used include: hydraulic presses in general, plastic component injection and blow-form presses, die-casting presses.

The valve is composed of a closure cover where the inductive position monitoring proximity sensor is inserted to signal the two possible states of logic element manufactured to DIN 24342

This valve, in view of its being placed inside a safety system loop, can detect movement dangerous both for the safety of the operator and of the machine itself.

Availability of the CETOP 3 mounting interface on closure cover allows direct insertion of the piloting valves into the main valve, offering in this way to the designer the possibility to produce compact systems which can be easily mounted inside the machine.

Ζ2

HYDRAULIC SYMBOL

ORDERING CODE

KRA

Cartridge valve with electrical position control (logic element 2/2 incorporated)

**

16 = NG16

25 = NG25

*

Calibrated orifices at ports A and P:

0 = no orifice

 $1 = \emptyset$ 1 mm dia opening (NG16 in standard configuration)

 $2 = \emptyset$ 1.2 mm dia opening (NG25 in standard configuration)

*

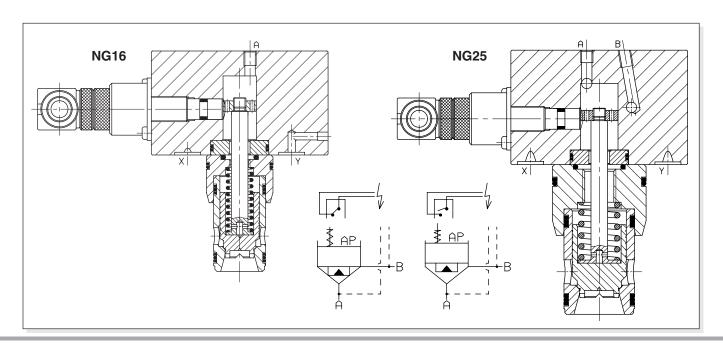
Opening pressure (bar):

NG16

NG25

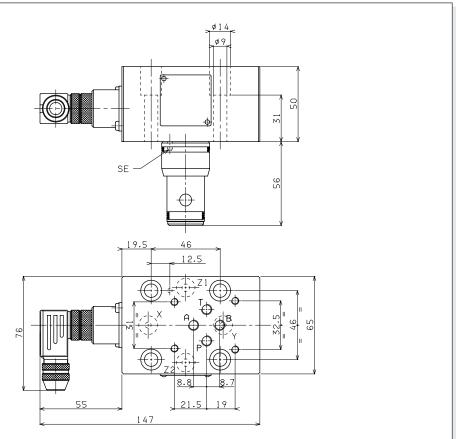
H = 4 (green spring)

3.5 (yellow spring)


J = 12 (no colour spring) 9 (blue spring)

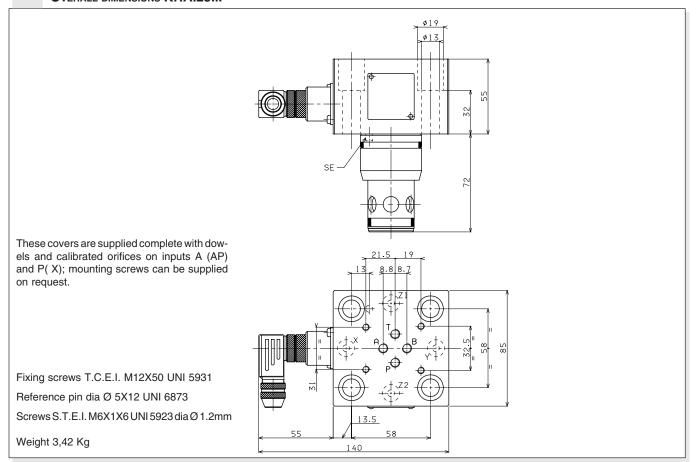
00

No variant


1

Serial No.

OVERALL DIMENSIONS KRA.16...


Fixing screws T.C.E.I. M8X45 UNI 5931
Reference pin dia Ø 3X12 UNI 6873
Screws S.T.E.I. M6X1X6 UNI 5923 dia Ø 1mm

These covers are supplied complete with dowels and calibrated orifices on inputs A (AP) and P(X); mounting screws can be supplied

Weight 2,2 Kg

on request.

OVERALL DIMENSIONS KRA.25...

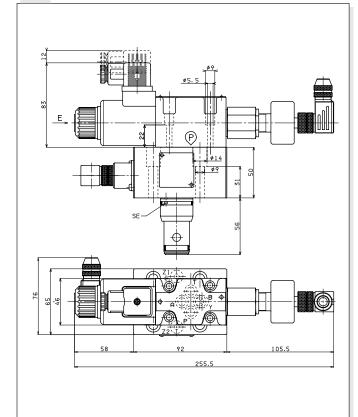
KRA.16/25 + AD.3.V				
PROXIMITY FOR KRA	Ch. V page 15			
AD.3.V	Ch. I page 13			
D15 DC COIL	Ch. I page 18			
L.V.D.T. FOR AD.3.V	Ch. I page 21			
STANDARD CONNECTORS	Ch. I page 19			

KRA.16/25... + AD.3.V... 2/2 CARTRIDGE VALVES WITH ELECTRICAL POSITION CONTROL VALVE

This valve series is used in those applications where monitoring of the "actual" valve position is required for managing machine safety cycle as required by current accident prevention legislation.

Typical example of application where this product is used include: hydraulic presses in general, plastic components injection and blow-form presses, die-casting presses.

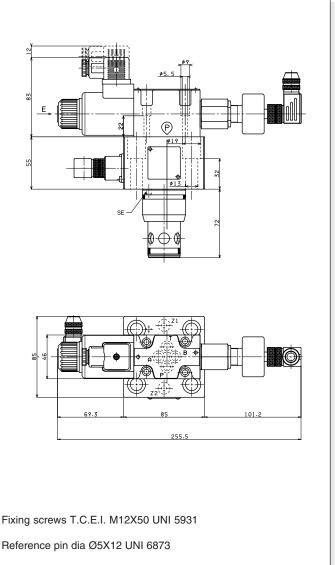
The valve is composed of closure cover where the inductive position monitoring proximity sensor is inserted to signal the two possible states of logic element manufactured to DIN 24342 standard.


This valve, in view of its being placed inside a safety system loop, can detect movements dangerous both for the safety of the operator and of the machine itself. Use a single solenoid directional valve AD.3.V... as piloting unit allows increase in the safety system control level, since even the piloting unit is equipped with a position monitoring proximity sensor capable of signalling the two possible valve states.

By combining these two monitoring systems it becomes possible to evaluate the hydraulic system response speed to prevent any possible malfunctioning or dangerous situations

These covers are supplied complete with dowel and calibrated orifices on inputs A (AP) /P(X); mounting screws can be supplied on request

KRA.16... + AD.3.V...



Fixing screws T.C.E.I. M8X45 UNI 5931

Reference pin dia Ø 3X12 UNI 6873

Screw S.T.E.I. M6X1X6 UNI 5923 dia Ø 1mm

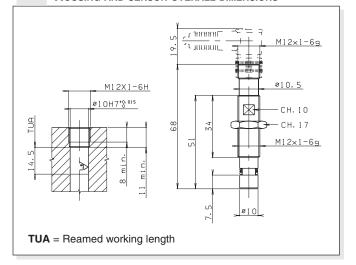
KRA.25... + AD.3.V...

Screw S.T.E.I. M6X1X6 UNI 5923 dia ø1.2mm

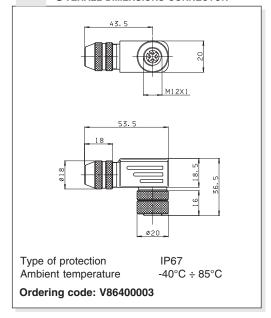
TECHNICAL SPECIFICATIONS PROXIMITY SENSORS AND CONNECTORS

The inductive proximity sensors make it possible to detect metal objects; the operating principle is based on a high frequency oscillator which produces an electromagnetic field in the immediate vicinity of the sensor.

The presence of a metal object (activator) inside the field dampness the amplitude of the oscillation because parte of electromagnetic energy is transferred from the sensor to the activator and from there it is dissipated through the effect of the induced currents.


In addition to the shape and the dimensions of the sensor, its sensitivity also depends on the type of metal from which the activator is made.

SPECIFICATIONS


Max. pressure	500 bar
External diameter	M12x1
Release distance	0 ÷ 1.1 mm
Outlet function	PNP - NA
Stabilized supply	10 ÷ 30 VDC
Release hysteresis	≤ 0.2 mm
Type of mounting	wire
Max. current supplied	130 mA
Residual undulation	≤ 15%
Max switching frequency	1000 Hz
Casing material	stainless steel
Type of attachment	connector
Degree of protection	IP68 on active surface
Ambient temperature	-25°C÷70°C
Protection against short circuit	yes

Outlet PNP-NA 1 = brown (positive) 3 = blue (negative) 4 = black (positive signal)

HOUSING AND SENSOR OVERALL DIMENSIONS

OVERALL DIMENSIONS CONNECTOR

TECHNICAL CATALOGUE ARON 2010

ABBREVIATIONS

	ADDREVIATIONS
AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	Low pressure connection
С	Stroke (MM)
CH	A CROSS FLATS
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I %	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
Р	LOAD PRESSURE (BAR)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	Pump flow (L/MIN)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

www.aron.it - sales@brevinifluidpower.com

General terms and conditions of sale: see website www.aron.it

IN LINE VALVES

aron

(SEE BREVINI FLUID POWER CARTRIDGE VALVES)

() aron

TECHNICAL CATALOGUE ARON 2010

ABBREVIATIONS

AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (degrees)
BP	Low pressure connection
С	Stroke (MM)
CH	A CROSS FLATS
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I%	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
P	LOAD PRESSURE (BAR)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	Pump flow (L/MIN)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

www.aron.it - sales@brevinifluidpower.com

General terms and conditions of sale: see website www.aron.it

SUBPLATES CETOP 2

BS.2	
	CH. VII PAGE 2
BC.2	
	Ch. VII page 4
BM.2	Ch. VII page 4

Subplates CETOP 3

Ch. VII page 7
Ch. VII page 9
0 \/// = . = = 10
Ch. VII page 10
CH. VII PAGE 13
OH. VII PAGE 13
CH. VII PAGE 14
5
Cap. VII page 16

SUBPLATES CETOP 5

BS.5	
	CH. VII PAGE 19
BC.5	
	Ch. VII page 24
BM.5	
	Ch. VII page 28

BS.2... Single station subplate

CETOP 2 SUBPLATES

BS.2.**.../ BS.2.12...

BS.2.14... Ch. VII PAGE 2

BS.2.16... / BS.2.20...

BS.3.2... CH. VII PAGE 3

BC.2.50.AB... / BC.2.50.PT...

BC.2.51... CH. VII PAGE 4

BM.2.**.../ BM.2.60...

Ch. VII PAGE 5

BM.2.50... / BM.2.70...

CH. VII PAGE 6

CMP.02... BFP CARTRIDGE CATALOGUE

BS.2.**...

BS Single subplate (blanking)

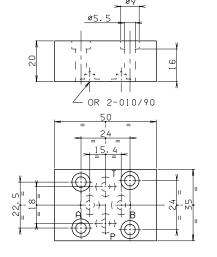
CETOP 2/NG4

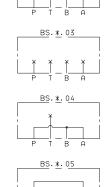
02 / 03 / 04 / 05 / 07

No variant

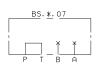
Serial No.

Weight: 0,09 Kg


2


**

00


1

Fixing screws M5x25 UNI 5931

BS. *. 02

BS.2.12 (REAR CONNECTORS)

BS Single subplate

CETOP 2/NG4

1/4" BSP rear connectors

No variant

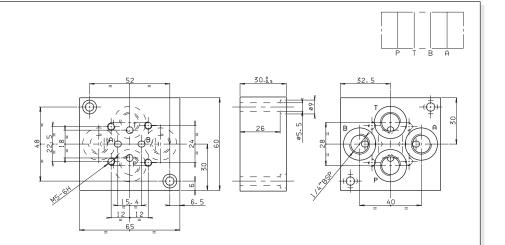
Serial No.

Weight: 0,3 Kg

2

14

00


1

2

00

1

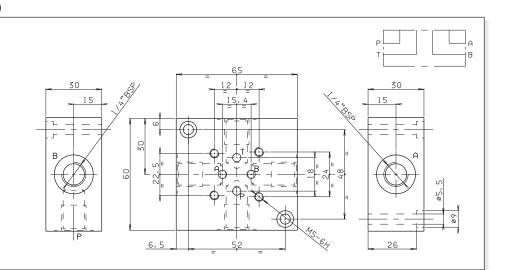
Fixing screws M5x35 UNI 5931

BS.2.14 (SIDE CONNECTORS)

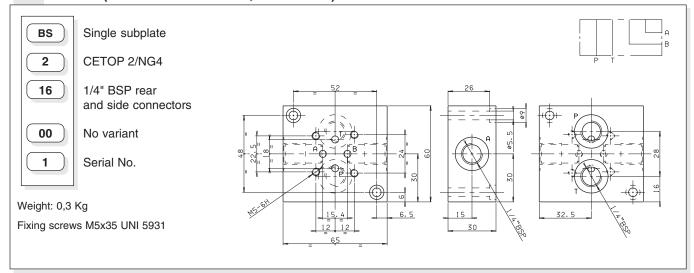
BS) | Single subplate

CETOP 2/NG4

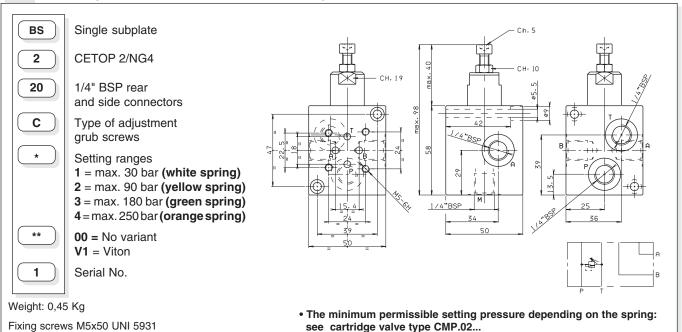
1/4" BSP side connectors

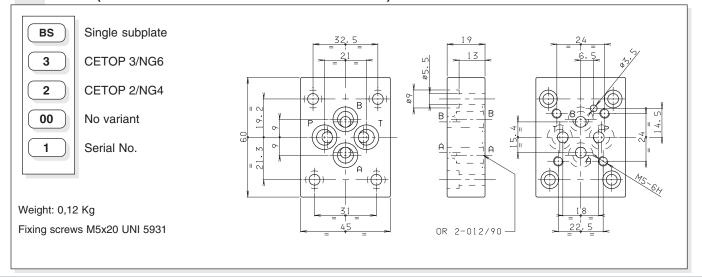

side connectors

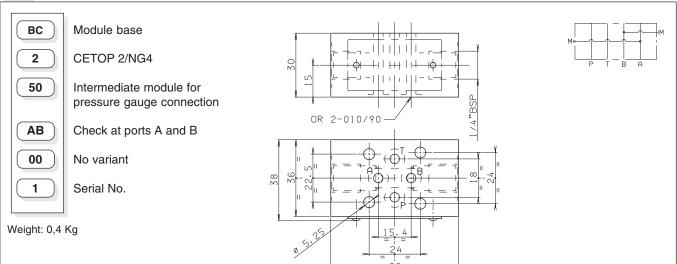
No variant

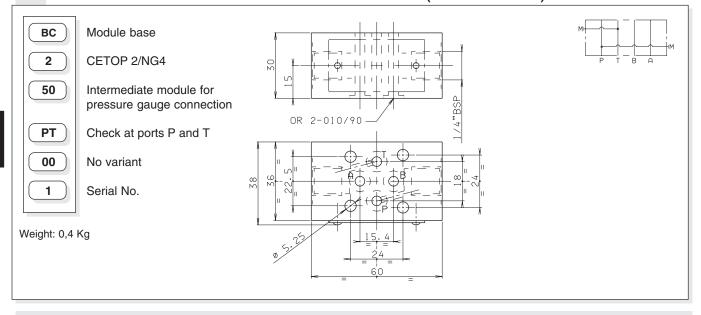

Serial No.

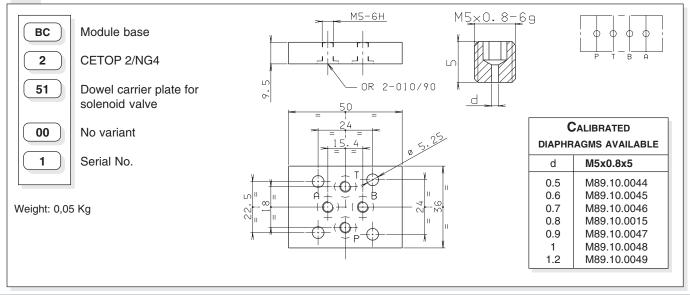
Weight: 0,3 Kg


Fixing screws M5x35 UNI 5931

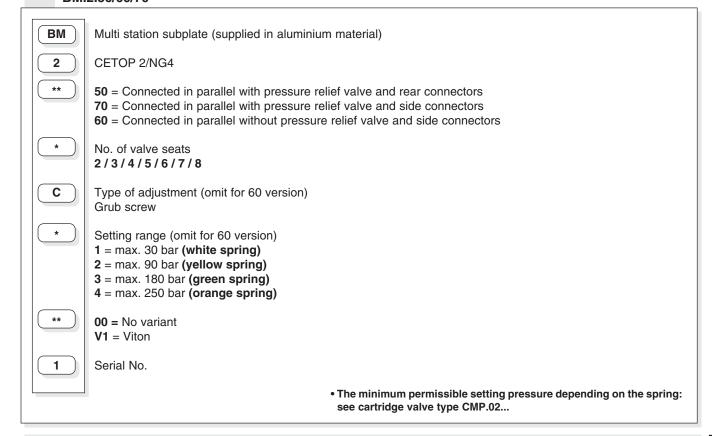

BS.2.16 (CONNECTORS SIDE A AND B, REAR P AND T)


BS.2.20 (CONNECTORS SIDE A AND B, REAR P AND T)


BS.3.2 (REDUCTION PLATE FROM CETOP 3/NG6 TO CETOP 2/NG4)

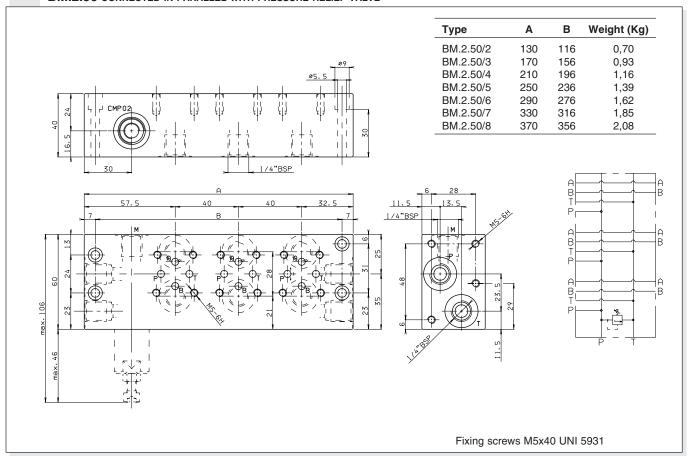

7

BC.2.50.PT INTERMEDIATE MODULE FOR PRESSURE GAUGE CONNECTION (VENTS P AND T LINES)

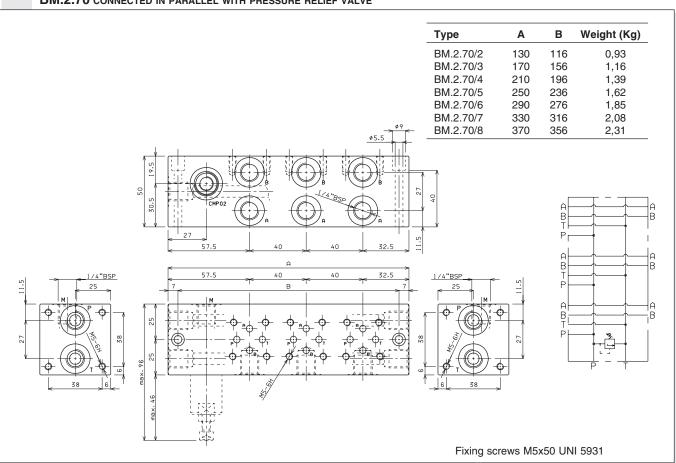


BC.2.51 DOWEL CARRIER PLATE FOR SOLENOID VALVE

BM.2.50/60/70



BM.2.60 CONNECTED IN PARALLEL WITHOUT PRESSURE RELIEF VALVE


	Туре	Α	В	Weight (Kg)
	BM.2.60/2	105	91	0,64
	BM.2.60/3	145	131	0,87
	BM.2.60/4	185	171	1,10
	BM.2.60/5 BM.2.60/6	225 265	211 251	1,33 1,56
	BM.2.60/7	305	291	1,79
	BM.2.60/8	345	331	2,02
32.5 40 40 32.5 A 32.5 40 40 32.5	77 05 88 88 9	6 38		ABT P
	Fixing	screws M5	<50 UN	I 5931

BM.2.50 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE

BM.2.70 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE

7

CETOP 3 SUBPLATES

BS.3.01... / BS.3.0*...

CH. VII PAGE 7

BS.3.10/11... / BS.3.12/13...

BS.3.14/15... / BS.3.16/17...

CH. VII PAGE 8

BS.3.20/21... / BS.VMP.10...

BS.3.W...

CH. VII PAGE 9 BC.3.25/27... / BC.3.30/32...

BC.3.40...

CH. VII PAGE 10

BC.3.41/*...

CH. VII PAGE 11

BC.3.50... / BC.3.51...

BC.3.07... / BC.3.107...

CH. VII PAGE 12

BC.3.08... / BC.3.09...

BC.06.XQ3... / BC.06.XQP3...

CH. VII PAGE 13

BC.06.25/27...

CAP. VII PAGE 14

BC.06.30/32... / BC.06.40...

BC.06.41/*... CH. VII PAGE 15

BM.3.**... / BM.3.60...

CH. VII PAGE 16

BM.3.50.../ BM.3.70...

CH. VII PAGE 17

BM.3.52... / BM.3.72...

CH. VII PAGE 18

CMP.10	BFP CARTRIDGE CATALOGUE
XQ.3	Ch. VIII page 12
XOP 3	CH VIII PAGE 14

BS.3... SINGLE STATION SUBPLATE

BS. *. 01

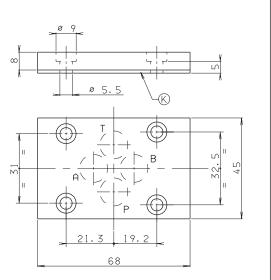
BS Single subplate (blanking) 3 CETOP 3/NG6

P/T/A/B closed

No variant

Serial No.

Weight: 0,2 Kg


01

00

1

Fixing screws M5x14 UNI 5931

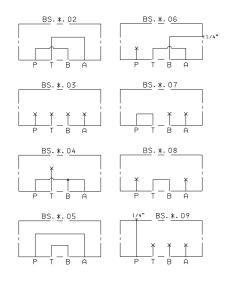
K = plate OR (Q25.95.0001)

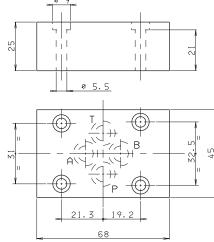
BS.3.**...

**

00

1

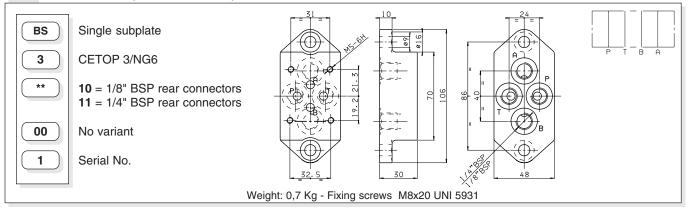

Single subplate (blanking) BS

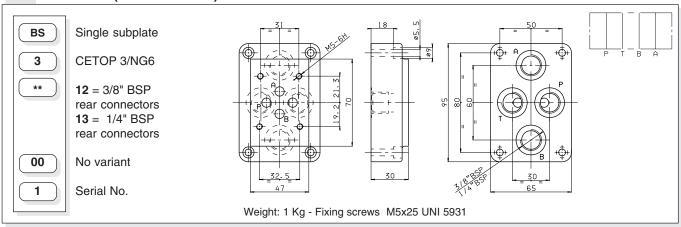

3 CETOP 3/NG6

02/03/04/05/06/07/08/09

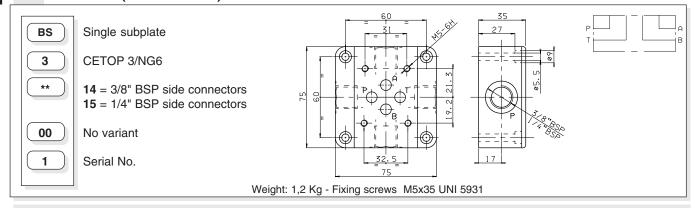
No variant

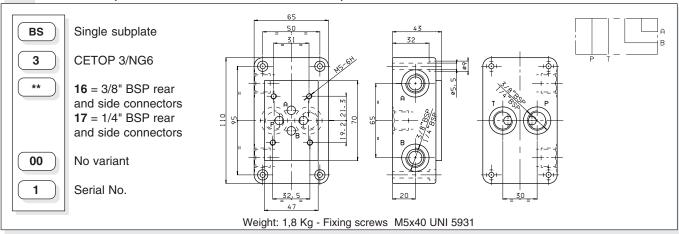
Serial No.

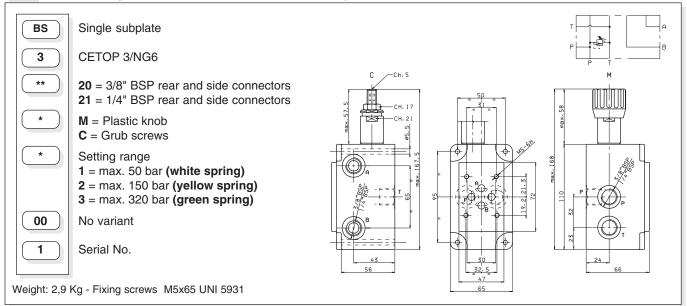


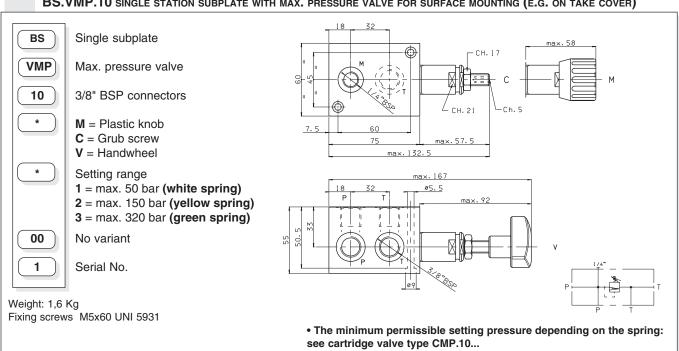

Weight: 0,5 Kg

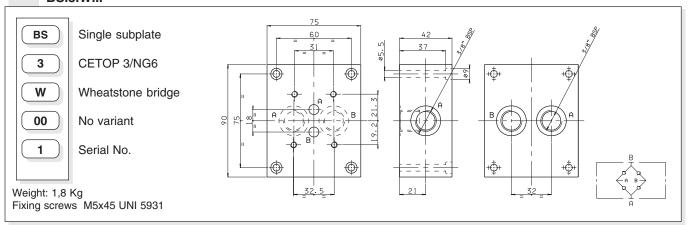
Fixing screws M5x30 UNI 5931

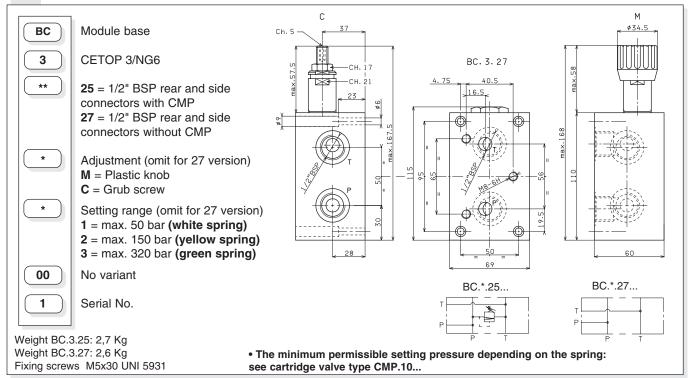

BS.3.10/11... (REAR CONNECTORS)

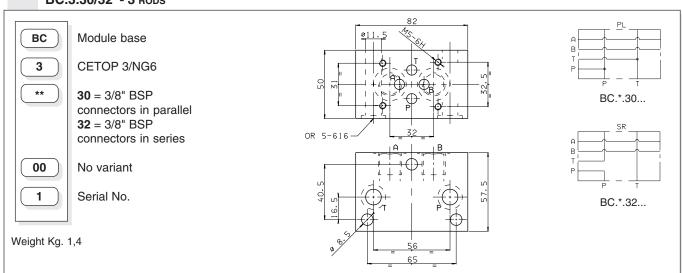

BS.3.12/13 (REAR CONNECTORS)

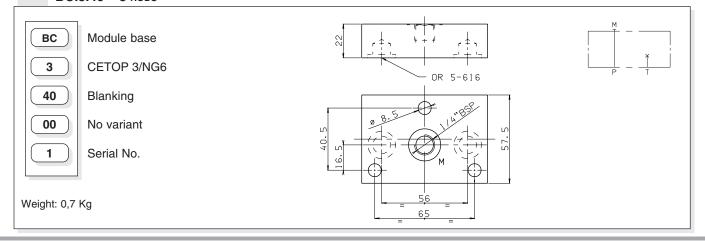

BS.3.14/15 (SIDE CONNECTORS)


BS.3.16/17 (CONNECTORS SIDE A AND B, REAR P AND T)

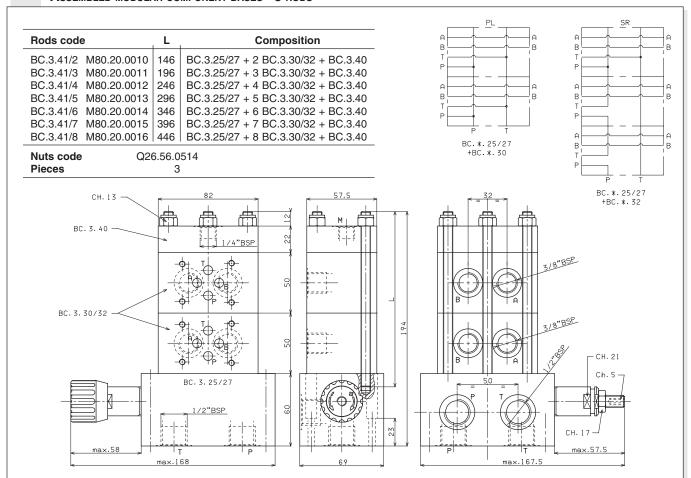

BS.3.20/21 (CONNECTORS SIDE A AND B, REAR P AND T)


BS.VMP.10 SINGLE STATION SUBPLATE WITH MAX. PRESSURE VALVE FOR SURFACE MOUNTING (E.G. ON TAKE COVER)


BS.3.W...


BC.3.25/27 P/T REAR AND SIDE CONNECTORS 1/2" BSP- 3 RODS

BC.3.30/32 - 3 RODS



BC.3.40 - 3 RODS

ASSEMBLED MODULAR COMPONENT BASES - 3 RODS

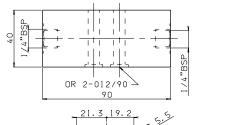
- For series connection the last block high up should be connected in parallel (BC.3.30)
- Single components should be ordered separately
- The minimum permissible setting pressure depending on the spring: see cartridge valve type CMP.10...

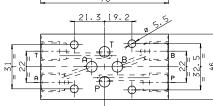
BC.3.41/* RODS FOR MODULAR ASSEMBLY

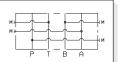
Rod code	Pieces	L	Composition	V
BC.3.41/2.00.1 BC.3.41/3.00.1 BC.3.41/4.00.1 BC.3.41/5.00.1 BC.3.41/6.00.1 BC.3.41/7.00.1 BC.3.41/8.00.1	3 3 3 3 3 3	146 196 246 296 346 396 446	for 2 solenoid valves for 3 solenoid valves for 4 solenoid valves for 5 solenoid valves for 6 solenoid valves for 7 solenoid valves for 8 solenoid valves	12 15 15 × ×

Module base

CETOP 3/NG6


Intermediate module for pressure gauge connection at ports A/B/P/T


No variant


1 Serial No.

Weight: 1 Kg

00

вс

Module base

3

CETOP 3/NG6

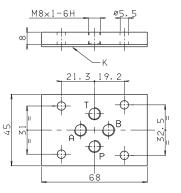
51

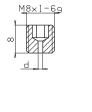
Dowel base plate

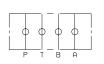
00

No variant

1


Serial No.


Weight: 0,2 Kg **K** = plate OR (Q25.95.0001)


CALIBRATED				
DIAPHRAGMS AVAILABLE				
d	M8x1x8			
0.6	M89.10.0007			
0.7	M89.10.0008			
8.0	M89.10.0009			
0.9	M89.10.0012			
1	M89.10.0010			
1.2	M89.10.0011			
1.4	M89.10.0038			
1.5	M89.10.0035			
1 75	M89 10 0042			

M89.10.0041

M89.10.0036

BC.3.07 BASE PLATE FOR DOUBLE FLOW RATE P-A AND B-T

2

2.5

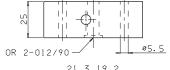
вс

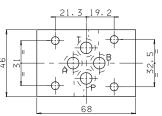
Module base

3

CETOP 3/NG6

07


bases plate for twin flow rate


00

No variant

1

Serial No.

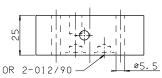
BC.3.107 BASE PLATE FOR USING 4 WAY VALVE AS 2 WAY ONLY

вс 3

Module base

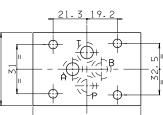
CETOP 3/NG6

107

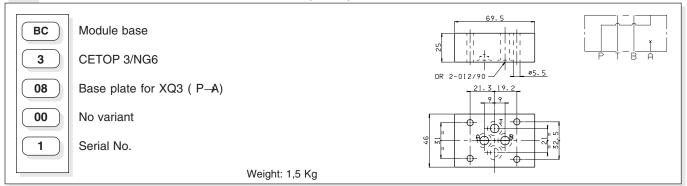

base for using 4 way valve as 2 way only

00

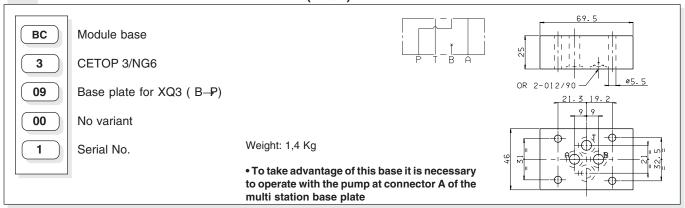
No variant


1

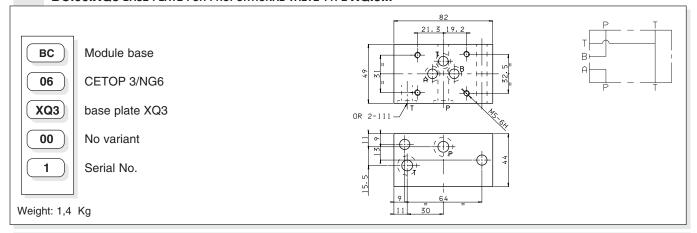
Serial No.

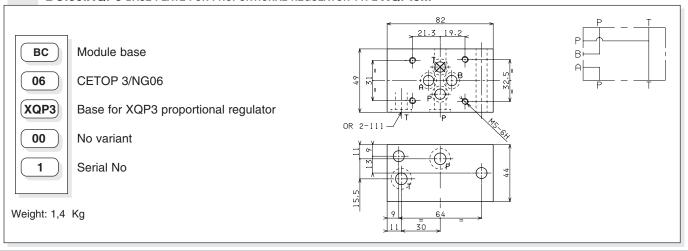


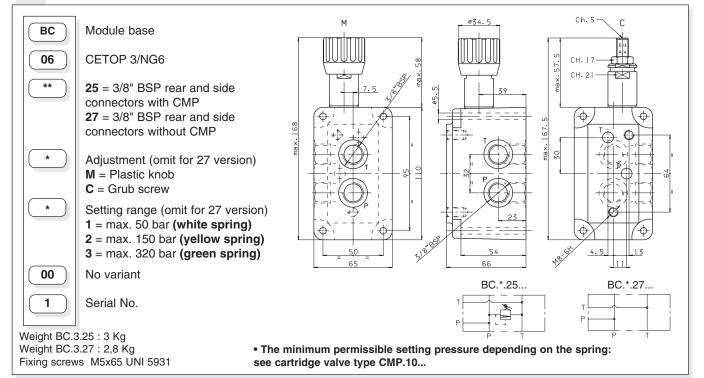
Weight: 0,5 Kg

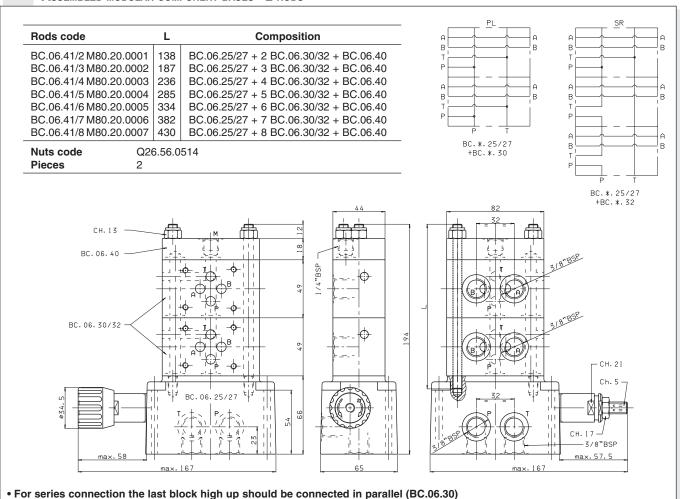

Weight: 0,5 Kg

File: BC3001_E


BC.3.08 INTERMEDIATE BASE PLATE FOR XQ.3... (P \rightarrow A)

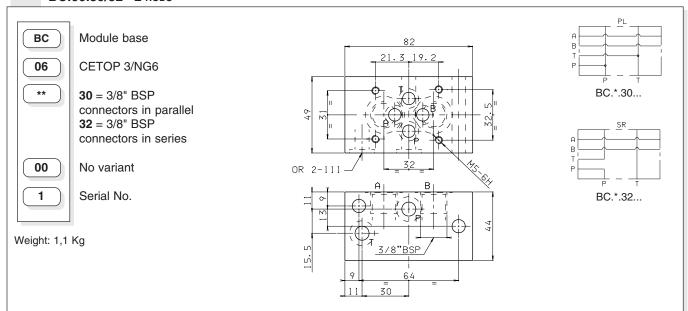

BC.3.09 INTERMEDIATE BASE PLATE FOR XQ.3... (B \rightarrow P)


BC.06.XQ3 BASE PLATE FOR PROPORTIONAL VALVE TYPE XQ.3...

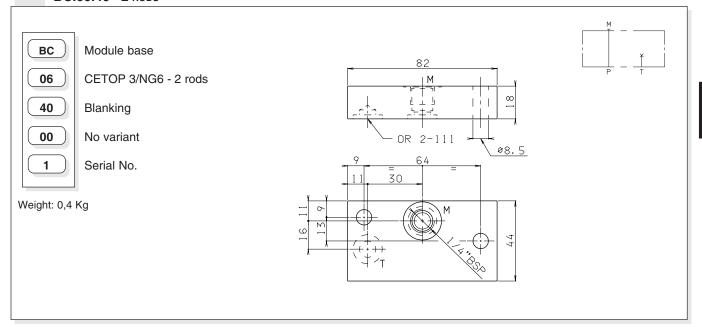

BC.06.XQP3 BASE PLATE FOR PROPORTIONAL REGULATOR TYPE XQP.3...

BC.06.25/27 P AND T REAR AND SIDE CONNECTORS 3/8" BSP - 2 RODS

ASSEMBLED MODULAR COMPONENT BASES - 2 RODS


File: BC06001 E

• Single components should be ordered separately

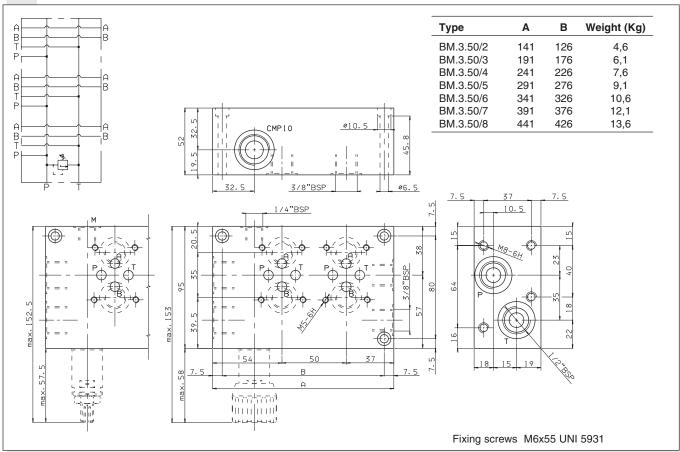

The minimum permissible setting range depending on the spring: see cartridge valve type CMP.10...

BC.06.30/32 - 2 RODS

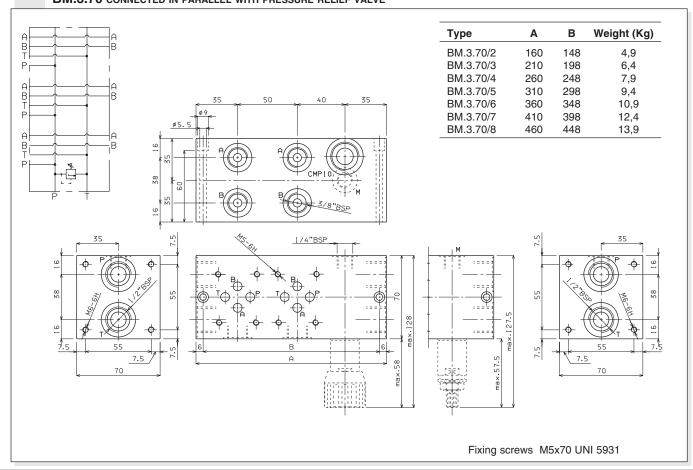
BC.06.40 - 2 RODS

BC.06.41/* RODS FOR MODULAR ASSEMBLY

od code	Pieces	L	Composition		
BC.06.41/2.00	.1 2	138	for 2 solenoid valves	¥	<u> </u>
3C.06.41/3.00	.1 2	187	for 3 solenoid valves	 	
BC.06.41/4.00	.1 2	236	for 4 solenoid valves	o 1	2
BC.06.41/5.00	.1 2	285	for 5 solenoid valves	6	<u></u>
BC.06.41/6.00	.1 2	334	for 6 solenoid valves		
BC.06.41/7.00	.1 2	382	for 7 solenoid valves	Σ	
BC.06.41/8.00	.1 2	430	for 8 solenoid valves		

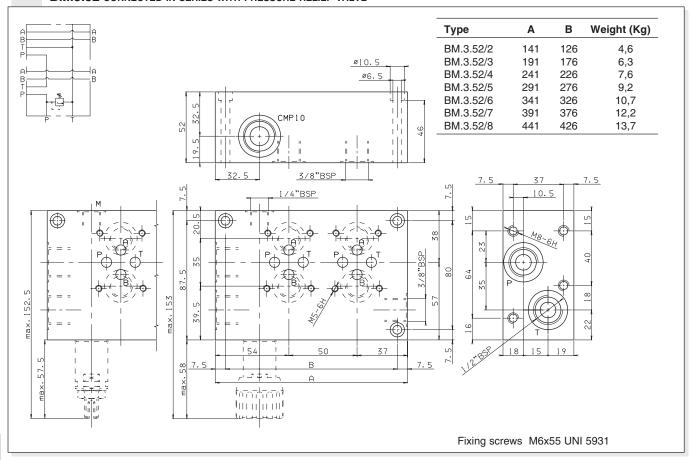

BM.3.**...

BM Multi station subplate (standard versions are supplied in cast iron material) 3 CETOP 3/NG6 ** **50** = Connected in parallel with pressure relief valve and rear connectors **70** = Connected in parallel with pressure relief valve and side connectors **52** = Connected in series with pressure relief valve and rear connectors **72** = Connected in series with pressure relief valve and side connectors **60** = Connected in parallel without pressure relief valve and side connectors No. of valve seats 2/3/4/5/6/7/8 Type of adjustment (omit for 60 version) **M** = Plastic knob C = Grub screw Setting range (omit for 60 version) 1 = max. 50 bar (white spring) 2 = max. 150 bar (yellow spring) 3 = max. 320 bar (green spring) ** 00 = No variant AL = in aluminium material versions 1 Serial No. • The minimum permissible setting pressure depending on the spring: see cartridge valve type CMP.10...


BM.3.60 CONNECTED IN PARALLEL WITHOUT PRESSURE RELIEF VALVE

Туре	Α	В	Weight (Kg)	
BM.3.60/2	120	108	3,6	
BM.3.60/3 BM.3.60/4	170 220	158 208	5,1	
BM.3.60/5	270	208 258	6,7 8.2	
BM.3.60/6	320	308	9,7	
BM.3.60/7	370	358	11,2	35 50 35
BM.3.60/8	420	408	12,6	T
				ø5. 5 .
A B				
——————————————————————————————————————				
B				8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A B				
			7.0	
		× 71	70	70 1/4"BSP 91 35
r I		< 3 ^t	7	1/4"BSP LO
	, Y	<u> </u>	P/III	
	16	φ-	*	
			TT 3/	B P B P T C T T T T T T T T T T T T T T T T T
	88	I.	123/	
	NO .	М6-6Н		
	<u> </u>	Σ		
	9	- & -		
	—	- 1-1		J
	· -	> \	55	B 6 v 55
		7.	<u> 7.5</u>	$ \stackrel{\sim}{\sim} \qquad \qquad$
ing screws M5				

BM.3.50 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE



BM.3.70 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE

BM.3.52 CONNECTED IN SERIES WITH PRESSURE RELIEF VALVE

BM.3.72 CONNECTED IN SERIES WITH PRESSURE RELIEF VALVE

7

BS.5... Single station subplate

BS. *. 01

BS.5.01...

BS Single subplate (blanking)

5

01

00

1

CETOP 5/NG10

P/T/A/B closed

No variant

Serial No.

CETOP 5 SUBPLATES

BS.5.01 / BS.5.0* CH. VII PAGE 19 BS.5.12... / BS.5.13... BS.5.14... / BS.5.15...

Ch. VII page 20

BS.5.16... / BS.5.17...

BS.5.3... Ch. VII page 21 BS.5.30/31... Ch. VII page 22

BS.VMP.20... / BS.5.29...

CH. VII PAGE 23

BC.5.36/28... Ch. VII page 24

BC.5.41/*... / BC.5.40...

CH. VII PAGE 25

BC.5.30/32... / BC.5.50... / BC.5.51...

Ch. VII page 26

BC.5.07... / BC.5.107...

BC.5.3A... / BC.10.06...

CH. VII PAGE 27

BM.5.**... / BM.5.50...

CH. VII PAGE 28

BM.5.60... / BM.5.70...

BM.5.80... CH. VII PAGE 29

CMP.20... BFP CARTRIDGE CATALOGUE
CMP.30... BFP CARTRIDGE CATALOGUE

CH. VII PAGE 29

Weight: 0,5 Kg
Fixing screws

Fixing screws
M6x15 UNI 5931 **K** = plate OR (Q25.95.0002)

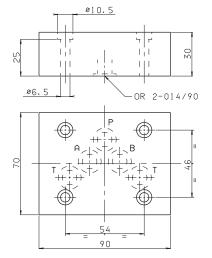
BS.5.**...

BS

**

00

1


Single subplate (blanking)

5 CETOP 5/NG10

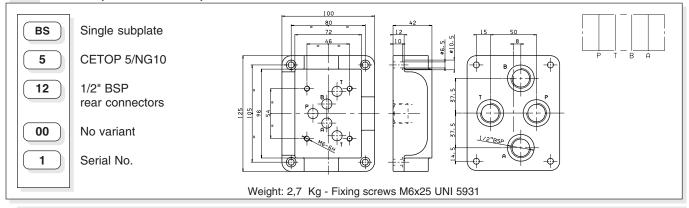
02/03/04/05/06/07/08/09

No variant

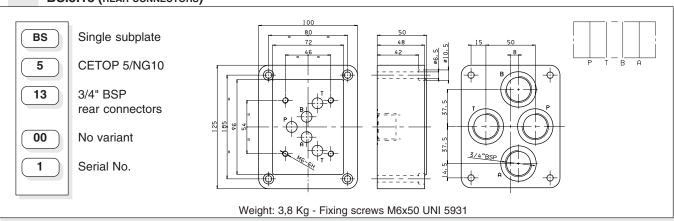
Serial No.

BS. *. 03

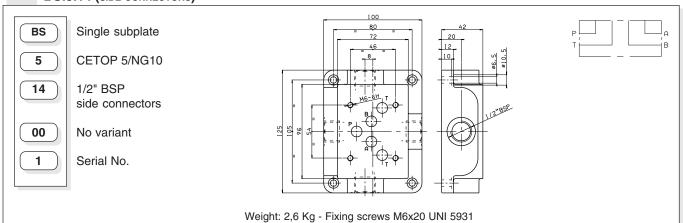
BS. *. 03

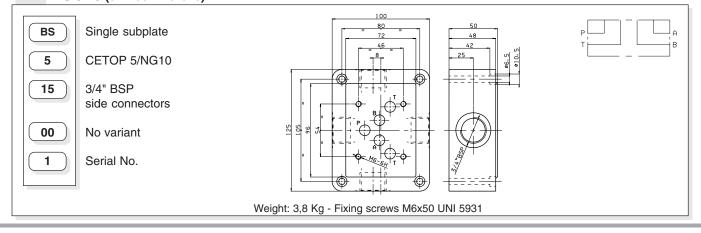

BS. *. 07

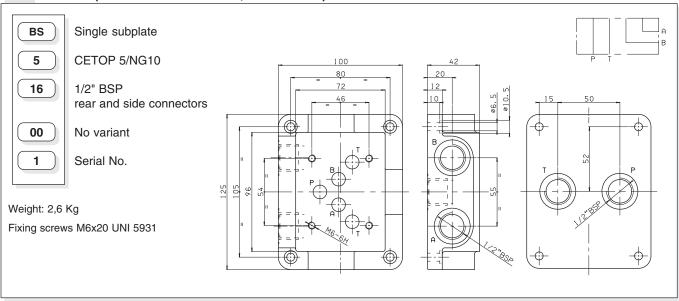
The property of the property

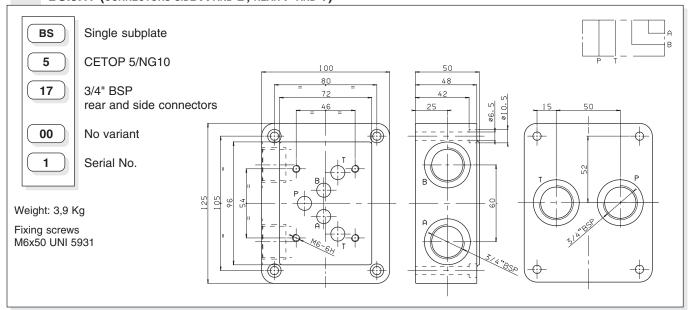

Weight: 1,2 Kg

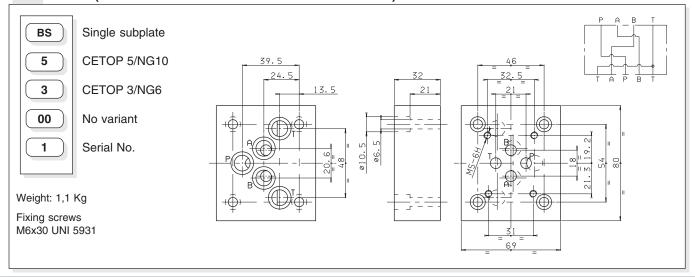
Fixing screws M6x35 UNI 5931


BS.5.12 (REAR CONNECTORS)


BS.5.13 (REAR CONNECTORS)


BS.5.14 (SIDE CONNECTORS)


BS.5.15 (SIDE CONNECTORS)


BS.5.16 (CONNECTORS SIDE A AND B, REAR P AND T)

BS.5.17 (CONNECTORS SIDE A AND B, REAR P AND T)

BS.5.3 (REDUCTION PLATE FROM CETOP 5/NG10 TO CETOP 3/NG6)

Single subplate CETOP 5/NG10

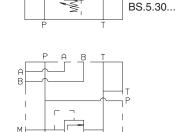
5

**

30 = Connectors A and B side, P and T rear (all 3/4" BSP) 31 = Connectors A and B side, P and T rear (all 3/4" BSP)

*

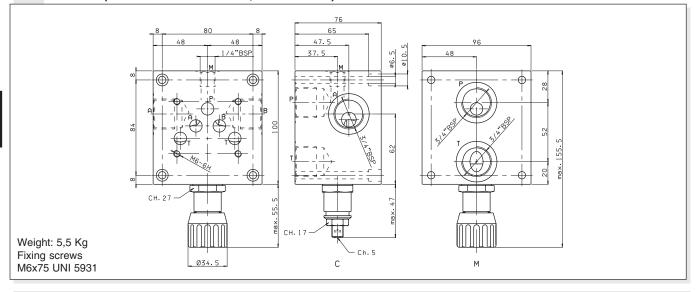
M = Plastic knob C = Grub screw

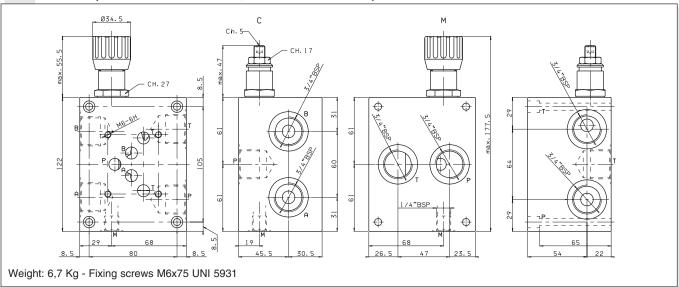

Setting range

1 = max. 50 bar (white spring) 2 = max. 140 bar (yellow spring) 3 = max. 350 bar (green spring)

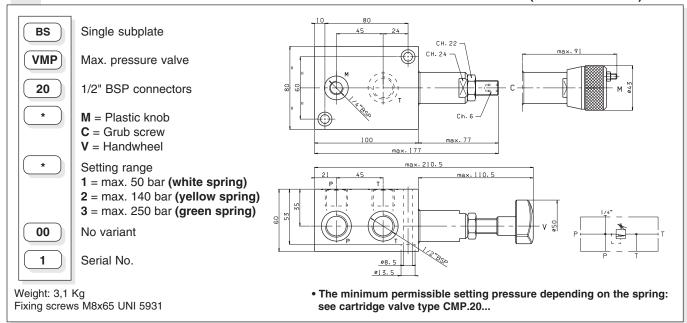
No variant

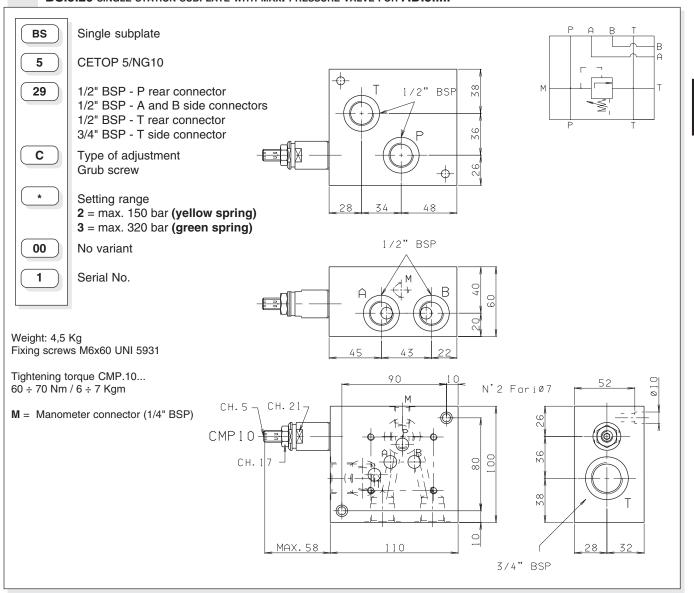
00

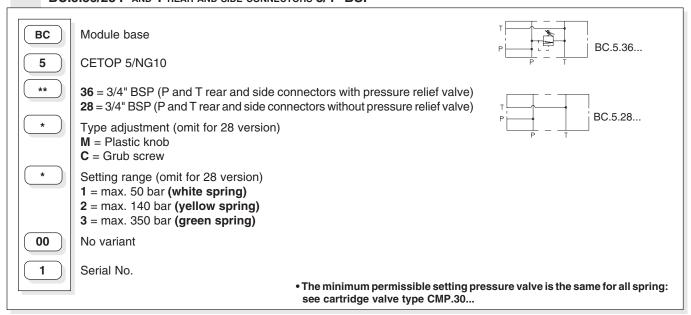

1 Serial No.

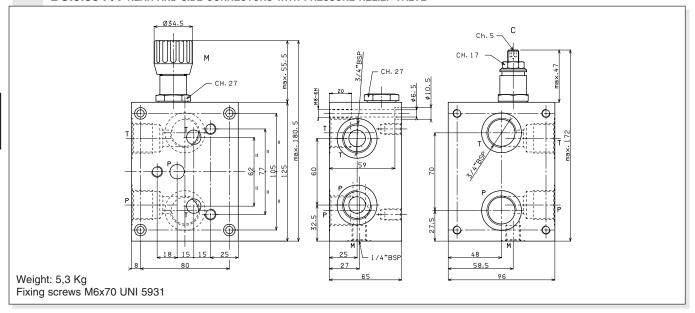

BS.5.31...

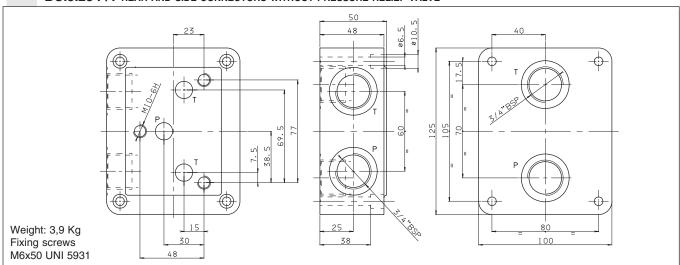
• The minimum permissible setting pressure depending on the spring: see cartridge valve type CMP.30...


BS.5.30 (CONNECTORS A AND B SIDE, P AND T REAR)

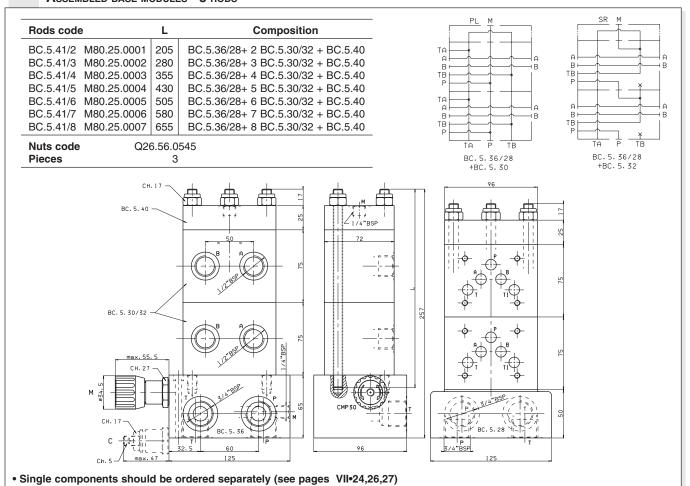

BS.5.31 (CONNECTORS A AND B SIDE, P AND T SIDE AND REAR)


BS.VMP.20 SINGLE STATION SUBPLATE WITH MAX. PRESSURE VALVE FOR SURFACE MOUNTING (E.G. ON TANK COVER)


BS.5.29 SINGLE STATION SUBPLATE WITH MAX. PRESSURE VALVE FOR AD.5.I...

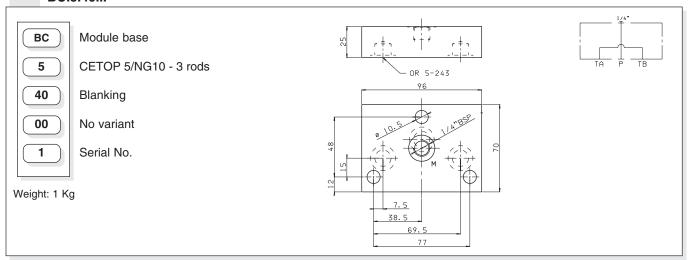

BC.5.36/28 P AND T REAR AND SIDE CONNECTORS 3/4" BSP

BC.5.36 P/T REAR AND SIDE CONNECTORS WITH PRESSURE RELIEF VALVE



BC.5.28 P/T REAR AND SIDE CONNECTORS WITHOUT PRESSURE RELIEF VALVE

ASSEMBLED BASE MODULES - 3 RODS



BC.5.41/* RODS FOR MODULAR ASSEMBLIES

Rods code	Pieces	L	Composition	
BC.5.41/2.00.1 BC.5.41/3.00.1	3	205 280	for 2 solenoid valve	
BC.5.41/4.00.1 BC.5.41/5.00.1	3	355 430	for 4 solenoid valve for 5 solenoid valve	<u> </u>
BC.5.41/6.00.1	3	505	for 6 solenoid valve	
BC.5.41/7.00.1 BC.5.41/8.00.1	3 3	580 655	for 7 solenoid valve for 8 solenoid valve	Σ

• The minimum permissible setting pressure is the same for all spring: see cartridge valve type CMP.30...

BC.5.40...

ВС

Module base

5

CETOP 5/NG10 - 3 rods

**

30 = 1/2" BSP connectors in parallel

31 = 3/4" BSP

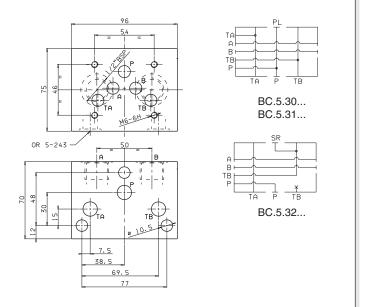
connectors in parallel

32 = 1/2" BSP

connectors in series

**

00 = No variant


Serial No.

AI = A and B rear connector

AS = A and B upper connectors

1

Weight: 3 Kg

BC.5.50 INTERMEDIATE MODULE FOR PRESSURE GAUGE

ВС

Module base

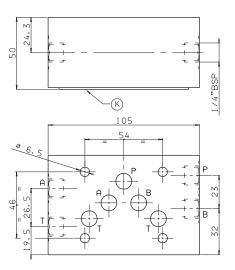
5

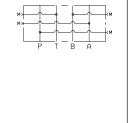
CETOP 5/NG10

50

Intermediate module for pressure gauge connection at ports A/B/P/T

00


No variant


1

Serial No.

Weight: 2,3 Kg

K = plate OR (Q25.95.0002)

BC.5.51 DOWEL PLATE FOR SOLENOID VALVE

ВС

Module base

5

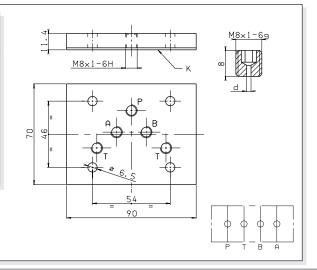
CETOP 5/NG10

51

Subplate for solenoid valve

00

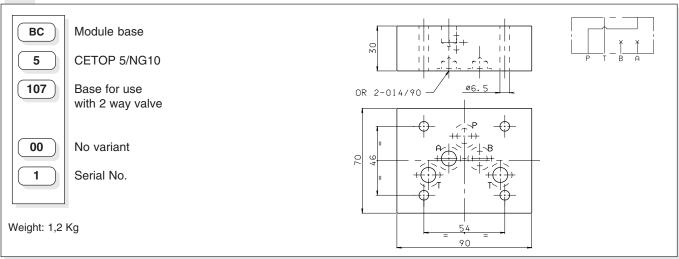
No variant

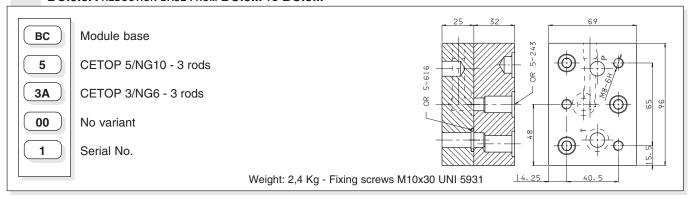

1

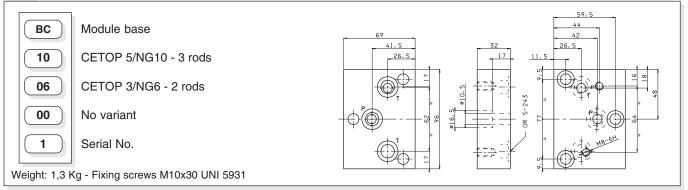
Serial No.


Weight: 0,5 Kg

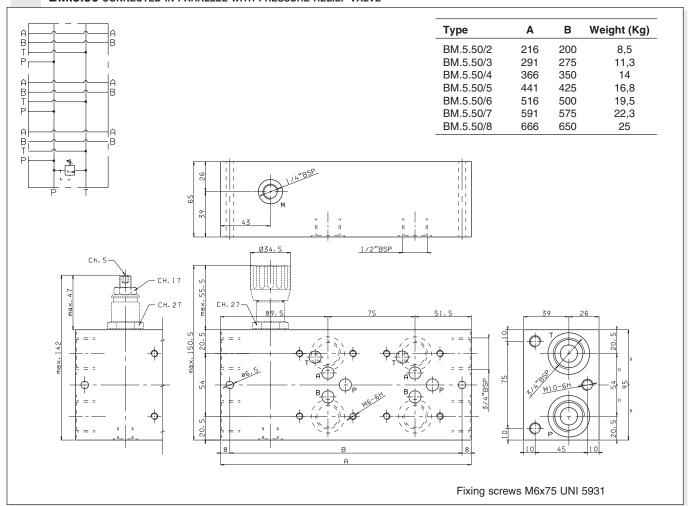
K = plate OR (Q25.95.0002)


DIAPHR	ACMS AVAILABLE							
	DIAPHRAGMS AVAILABLE							
d	M8x1x8							
0.6	M89.10.0007							
0.7	M89.10.0008							
0.8	M89.10.0009							
0.9	M89.10.0012							
1	M89.10.0010							
1.2	M89.10.0011							
1.4	M89.10.0038							
1.5	M89.10.0035							
1.75	M89.10.0042							
2	M89.10.0041							
2.5	M89.10.0036							

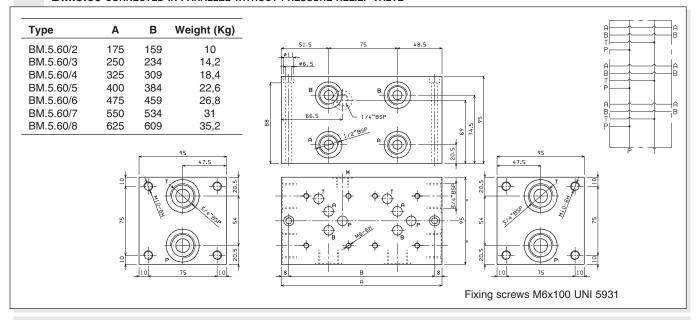

BC.5.07 BASE FOR DOUBLE FLOW RATE P-A E B-T


BC.5.107 BASE FOR USE WITH 2 WAY VALVE

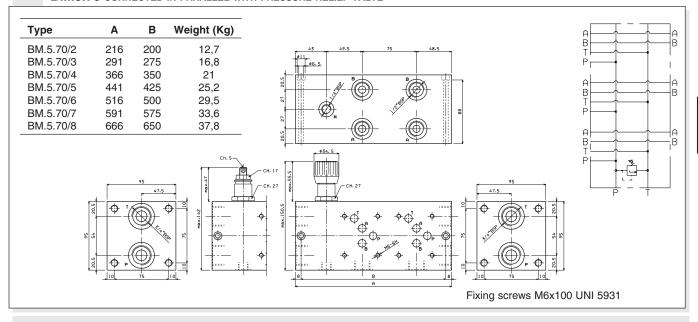
BC.5.3A REDUCTION BASE FROM BC.5... TO BC.3...

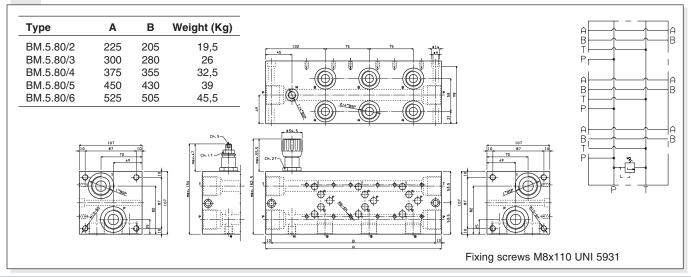

BC.10.06 REDUCTION BASE FROM BC.5... TO BC.06...

BM.5.**...


BMMulti station subplate (standard versions are supplied in cast iron material) 5 CETOP 5/NG10 ** **50** = Connected in parallel with pressure relief valve and rear connectors **60** = Connected in parallel without pressure relief valve and side connectors 70 = Connected in parallel with pressure relief valve and 3/4" BSP P/T connectors and 1/2" BSP side A/B 80 = Connected in parallel with pressure relief valve and 1" BSP P/T connectors and 3/4" BSP side A/B No. of valves seats (for BM.5.80... max 6)) 2/3/4/5/6/7/8 Type of adjustment (omit for 60 version) M = Plastic knob C = Grub screw Setting range (omit for 60 version) 1 = max. 50 bar (white spring) 2 = max. 140 bar (yellow spring) 3 = max. 350 bar (green spring) ** 00 = No variant **AL** = in aluminium material (only for BM560 and BM570 versions) 1 Serial No. • The minimum permissible setting pressure is the same for all spring: see cartridge valve type CMP.30...

BM.5.50 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE




BM.5.60 CONNECTED IN PARALLEL WITHOUT PRESSURE RELIEF VALVE

BM.5.70 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE

BM.5.80 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE

TECHNICAL CATALOGUE ARON 2010

() aron

ABBREVIATIONS

AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	Low pressure connection
С	Stroke (MM)
CH	Across flats
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I%	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
Р	LOAD PRESSURE (BAR)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	Pump flow (L/MIN)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

www.aron.it - sales@brevinifluidpower.com

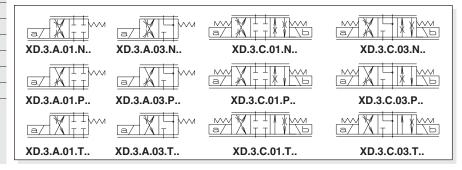
General terms and conditions of sale: see website www.aron.it

PROPORTIONAL VALVES

XD.3.A / XD.3.C
Ch. VIII page 2
D15P PROPORTIONAL SOLENOIDS
Ch. VIII PAGE 3
XDP.3.A / XDP.3.C
Ch. VIII page 4
D15P PROPORTIONAL SOLENOIDS
Ch. VIII page 5
XDP.5.A / XDP.5.C
Ch. VIII page 6
D19P PROPORTIONAL SOLENOIDS
Ch. VIII page 7
XDC.3 Serie 2
CH. VIII PAGE 8
PROPORTIONAL SOLENOIDS
Ch. VIII PAGE S
XECV.3
Ch. VIII page 10
XEPV.3
Ch. VIII page 13
AM.3.H
Ch. VIII page 16
AM.5.H
Ch. VIII page 17
XQ.3
Ch. VIII page 18
D15P PROPORTIONAL SOLENOIDS
Ch. VIII page 19
XQP.3.
Ch. VIII page 20
D15P PROPORTIONAL SOLENOIDS
Ch. VIII page 21
XQP.5.
Ch. VIII page 22
D19P Proportional solenoids
Ch. VIII page 23
XP.3
Ch. VIII page 24
AM.3.XMP
Ch. VIII page 26

XD.3						
"D15P" PROPORT. SOLENOIDS	CH. VIII PAGE 3					
REM.S.RA	Ch. IX page 4					
REM.D.RA	Ch. IX page 7					
SE.3.AN21.00	CH. IX PAGE 11					
AM.3.H	CH. VIII PAGE 16					
BC.3.07	Ch. VII page 12					

XD.3.A... / XD.3.C... SOLENOID OPERATING PROPORTIONAL VALVES CETOP 3


XD.3.A../XD.3.C.. series valves are used for controlling fluid direction and flow rate as a function of the supply current to the proportional control solenoid.

Any valve Δp variation causes a change in the set flow rate; however the valve itself ensure a high level internal compensation by limiting the controlled flow rate.

To ensures a constant flow rate and reduce leakage, we recommend to use AM3H2V or AM3H3V hydrostats.

Performances shown in this catalogue are guaranteed only using 2 or 3 way modular assembly hydrostats type AM.3.H. ...

The shown flow rates are typical for one line operation (e.g. from P to B), while higher flow rates are obtainable by using the valve with our flow rate doubling sub-base type BC.3.07 (see diagram next page). This type of configuration extends considerably the flow rate limit.

INPUT SIGNAL CURVES - FLOW RATE

ORDERING CODE

XD

Proportional valve

3

CETOP 3/NG6

(*)

A = Single solenoidC = Double solenoid

**

Type of spool

*

Flow path control (see symbols table)

N = symmetrical

P = meter in

T = meter out

*

Flow rating l/min (∆p 5 bar)

1 = 3 l/min

2 = 10 l/min

3 = 15 l/min

4 = 18 l/min

*

E = 9VDC (2.35 A)

F = 12VDC (1.76 A)

G = 24VDC (0.88 A)

**

00 = No variant

V1 = Viton

P1 = Rotary emergency

P5 = Rotary emergency 180°

2

Serial No.

XD.3.*.01.N XD.3.*.01.N (3 I/min $P \rightarrow A/B$) (10 I/min $P \rightarrow A/B$) (//min) Q (//min) I (%) I (%) XD.3.*.01.N XD.3.*.01.N (15 I/min $P \rightarrow A/B$) (18 I/min $P \rightarrow A/B$) (I/min) Q (I/min) I (%) 1 (%) POWER LIMITS TRANSMITTED P-A / B -T P-B / A-T (bar)

The fluid used is a mineral based oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

Q (Î/min)

XD.3.A... / XD.3.C... SOLENOID OPERATING PROPORTIONAL VALVES CETOP 3

OPERATING SPECIFICATIONS

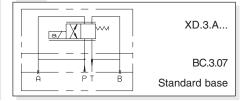
the specified ARON electronic control units.

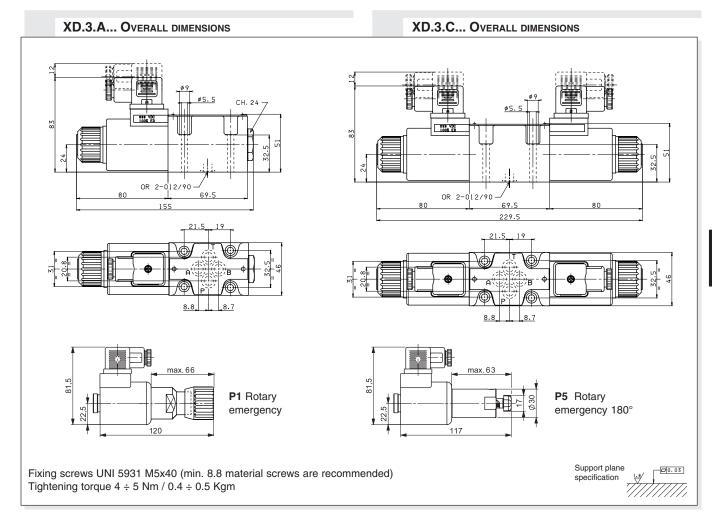
Max. operating pressure ports P/A/B 350 bar Max. operating pressure ports T - for dynamic pressure see note (*) 250 bar Regulated flow rate 3 / 10 / 15 / 20 / 25 l/min Relative duty cycle Continuous 100% ED Type of protection IP 65 Flow rate gain See diagrams Hysteresis with connection P/A/B/T $\Delta p = 5$ bar (P/A) ≤7% of max. flow rate Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -20°C ÷ 75°C Max. contamination level class 8 in accordance with NAS 1638 with filter $\beta_{10} \ge 75$ Weight XD.3.A... (single solenoid) 1,5 Kg Weight XD.3.C... (double solenoid) 1,7 Kg Type of voltage 12V 24V 9V Max. current 2.35A 1.76 A 0.88 A Solenoid coil resistance at 25°C (77°F) 2.25 Ohm 4.0 Ohm 16.0 Ohm (*) Pressure dynamic allowed for 2 millions of cycles. • Operating specifications are valid for fluid with 46 mm²/s viscosity at 40°C, using

ELECTRONIC CONTROL UNIT

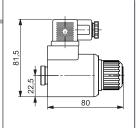
REM.S.RA.*.*. and REM.D.RA.*.*.

Card type control for single and double solenoid


SE.3.AN.21.00...


EUROCARD type control for single and double solenoid

AM.3.H.2V.P1 and AM.3.H.3V.P1

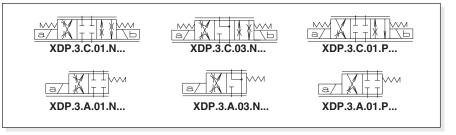

Hydrostats 2 or 3 way.

SCHEMA FOR DOUBLE FLOW RATE

"D15P" PROPORTIONAL SOLENOIDS

Type of protection (in relation to connector used) Duty cycle Insulation class wire	IP 66 100% ED H	
Weight (coil) Weight (solenoid)	0,354 Kg 0,608 Kg	
	ETD15P - 01/2002/e	

XDP.3		
D15P PROPORTIONAL SC	DLENOIDS CH. VIII PAGE 5	
REM.S.RA	Ch. IX page 4	
REM.D.RA	CH. IX PAGE 7	
SE.3.AN21.00	CH. IX PAGE 11	
AM.3.H	Ch. VIII page 16	
AM.5.H	Ch. VIII page 17	
BC.3.07	Ch. VII page 12	


XDP.3.A... / XDP.3.C ...

PROPORTIONAL DIRECTIONAL VALVES OPEN LOOP OFFI

The open loop valves of series XDP... control the direction and the volume of the flow according to the feeding current to the proportional solenoid. By using a valve body equipped with increased passage channels it is possible to reach the highest capacity of its dimensions at a parity of pressure drops, (40 l/min with Δp of 10 bar).

Each Δp variation on the valve leads to the variation of the capacity which has been set, anyway the valve guarantees an high inner compensation grade and limits the adjustment capacity.

Performances shown in this catalogue are guaranteed only using 2 or 3 way modular assembly hydrostats type AM.3.H. ... By using the valve with the base for capacity doubling type BC.3.07 (see next page) a greater capacity cam be obtained.

ORDERING CODE

XDP

Open loop proportional directional valve

CETOP 3/NG6

**

A = Single solenoid

C = Double solenoid

Type of spool (null position)

Flow path control

(see hydraulic symbols table)

N = symmetrical

P = meter in (only with 01 spool)

2

Flow rating

I/min (∆p 10 bar) |

1 = 8 l/min

2 = 15 l/min

3 = 25 l/min

6 = 40 l/min ←

In order to reduced the unloading pressure for rated flow version at 40 l/min we advise to use the 3 way type AM.5.H.3V... hydrostat.

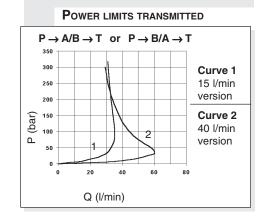
Max. current to solenoid

E = 2.35 A

F = 1.76 A

G = 0.88 A

** 00 = No variant


P1 = Rotary emergency

P5 = Rotary emergency 180°

V1 = Viton

Serial No.

INPUT SIGNAL CURVES - FLOW RATE XDP.3.*.01.N XDP.3.*.01.N (8 I/min $P \rightarrow A/B$) (15 I/min $P \rightarrow A/B$) 12 $\Delta p = 10 \text{ bar}$ Q (I/min) Q (I/min) 10 8 4 6 With $\Delta p = 5 \text{ bar}$ AM.3.H.3V.P1.08 (Ap »8 bar) 40 | (%) I (%) XDP.3.*.01.N XDP.3.*.01.N $(25 \text{ I/min P} \rightarrow \text{A/B})$ (40 I/min $P \rightarrow A/B$) 45 40 35 Q (I/min) 30 $\Delta p = 10 \text{ bar}$ $\Delta p = 10 \text{ bar}$ Q (/min) 25 20 15 $\Delta p = 5 \text{ bar}$ $\Delta p = 5 \text{ bar}$ 10 Î (%) I (%)

01/2010/e

XDP.3.A... / XDP.3.C ... PROPORTIONAL DIRECTIONAL VALVES OPEN LOOP

OPERATING SPECIFICATIONS

Max. operating pressure ports P/A/B	350 bar
Max. pressure port T - for dynamic pressure see note (*	() 250 bar
Nominal flow	8 / 15 / 25 / 40 l/min
Duty cycle	Continuous 100% ED
Type of protection (depending on the connector used)	IP 65
Flow rate gain	See diagram
Power limits curves transmitted	See diagram
Fluid viscosity	$10 \div 500 \text{ mm}^2/\text{s}$
Fluid temperature	-20°C ÷ 75°C
Ambient temperature	-20°C ÷ 70°C
Max. contamination level	from class 7 at 9 in accordance
	with NAS 1638 with filter $\beta_{10} \ge 75$

Weight XDP.3.A... (single solenoid) Weight XDP.3.C... (double solenoid)

Max. current 2.35A 1.76 A 0.88	
Max. Current 2.33A 1.76 A 0.00	Α
Solenoid coil resistance 25°C (77°F) 2.25 Ohm 4.0 Ohm 16.0 Oh	m
Hysteresis P / A / B / T	
with a pressure compensator AM.3.H.3V ≤5 % <5% <8	%
Response to step $\Delta p = 5$ bar (P/A)	
$0 \div 100\%$ 32 ms 40 ms 85 n	ns
$100\% \div 0$ 33 ms 33 ms 33 ns	ns
Frequency response -3db (Input signal 50% ±25% Vmax)	
22Hz 22Hz 12H	Ηz

(*) Pressure dynamic allowed for 2 millions of cycles

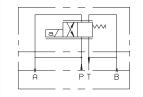
Operating specifications are valid for fluids with 46 mm²/s viscosity at 40°C, using the specified ARON electronic control units. Performance data carried out using the specified Aron power amplifier SE.3.AN... serie 1 - EUROCARD format - powered to 24V.

AMPLIFIER UNIT AND CONTROL

REM.S.RA.*.*. and REM.D.RA.*.*.

Electronic card control single and double proportional solenoid valve.

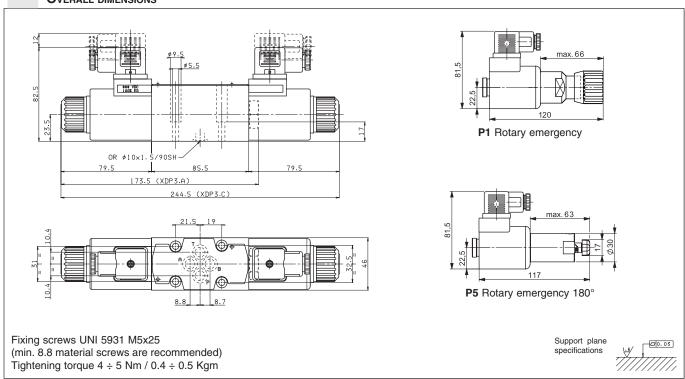
SE.3.AN.21.00...

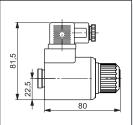

1,7 Kg

Electronic card format EUROCARD for control and double proportional solenoid valve

AM.3.H.2V.P1 / AM.3.H.3V.P1 and AM.5.H.3V.P1 (*)

Hydrostats 2 or 3 way (*) for rated flow XDP3 version at 40 l/min only


CONFIGURATION FOR DOUBLE FLOW RATE


XDP.3.A...

BC.3.07 Standard subplate

OVERALL DIMENSIONS

"D15P" Proportional solenoids

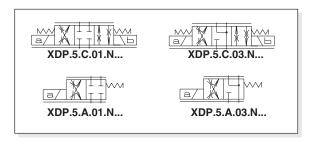
Type of protection (in relation to connector used)	IP 66
Duty cycle	100% ED
Insulation class wire	н
Weight (coil)	0,354 Kg
Weight (solenoid)	0,608 Kg

ETD15P - 01/2002/e

File: XDP3002 E VIII • 5 01/2010/e

XDP.5	
"D19P" PROPORT. SOLENOIDS	Ch. VIII page 7
REM.S.RA	Ch. IX page 4
REM.D.RA	Ch. IX page 7
AM.5.H	CH. VIII PAGE 17

XDP.5.A... / XDP.5.C ...


PROPORTIONAL DIRECTIONAL VALVES OPEN LOOP OFFI

The open loop valves of series XDP control the direction and the volume of the flow according to the feeding current to the proportional solenoid.

Each Δp variation on the valve leads to the variation of the capacity which has been set, anyway the valve guarantees an high inner compensation grade and limits the adjustment capacity.

Performances shown in this catalogue are guaranteed only using 2 or 3 way modular assembly hydrostats type AM.3.H. ... (see note below in ordering code).

Q5 variant - This variant that consists of a solenoid chamber drainage separated from the T line and obtained on CETOP RO5 interface allows operation with up to 320 bar max. back pressure on the T line. To ensure maximum solenoid valve mounting safety and supplementary drainage, only 12.9 material fixing screws must be used with it.

ORDERING CODE

XDP

Open loop proportional directional valve

5

CETOP 5/NG10

*

A = Single solenoidC = Double solenoid

**

Type of spool (null position)

$$01 = \begin{bmatrix} \bot & \bot \\ \top & \top \end{bmatrix} \quad 03$$

N

Symmetrical flow path control (see hydraulic symbols table)

*

Flow rating (*) Δp 10 bar

2 = 45 l/min

3 = 60 l/min

5 = 100 l/min

*

Max. current to solenoid

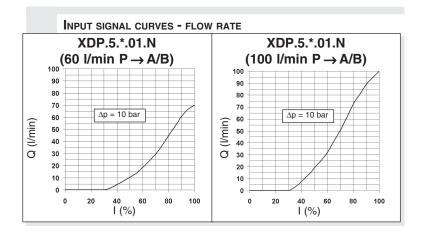
F = 2.5 A

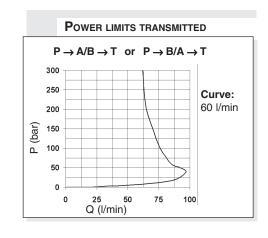
G = 1.25 A

**

00 = No variant

P1 = Rotary emergency


V1 = Viton


Q5 = External drainage

1

Serial No.

(*) Guaranteed with 24Volt, 2.5Amps supply.

XDP.5.A... / XDP.5.C ... PROPORTIONAL DIRECTIONAL VALVES OPEN LOOP

OPERATING SPECIFICATIONS

Max. operating pressure ports P/A/B		320 bar
Max. pressure port T - for dynamic pressure see note (*)		250 bar
Max. pressure port T (with external drainage - Q5 variant)		320 bar
Nominal flow		0 / 100 l/min
Duty cycle	Continuo	us 100% ED
Type of protection (depending on the connector used)		IP 65
Flow rate gain		See diagram
Power limits curves transmitted		See diagram
Fluid viscosity	10	÷ 500 mm²/s
Fluid temperature	-	20°C ÷ 75°C
Ambient temperature	-	20°C ÷ 70°C
Max. contamination level from class 7 at 9 in accordance with	NAS 1638 wit	h filter ß₁₀≥75
Weight XDP.5.A (single solenoid)		4,97 Kg
Weight XDP.5.C (double solenoid)		6,55 Kg
Max. current	2.5 A	1.25 A
Solenoid coil resistance 20°C (68°F)	2.85 Ohm	11.4 Ohm
Hysteresis P/A/B/T		
with a pressure compensator AM.5.H.3V	<5%	<8%
Response to step $\Delta p = 10$ bar (P/A)		
0 ÷ 100%	56 ms	118 ms
100% ÷ 0	32 ms	32 ms
Frequency response -3db (Input signal 50% ±25% Vmax)		
	10Hz	7Hz
(*) Pressure dynamic allowed for 2 millions of cycles		

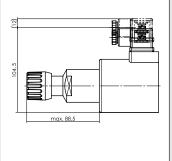
Operating specifications are valid for fluids with 46 mm 2 /s viscosity at 40 $^\circ$ C, using the specified ARON electronic control units. Performance data carried out using the

specified Aron power amplifier type REM.S.RA... power supplied at 24V.

224,5 (XDP5A)

324 (XDP5C)

AMPLIFIER UNIT AND CONTROL


REM.S.RA.*.*. and REM.D.RA.*.*.

Electronic card control single and double proportional solenoid valve.

AM.5.H.2V.P1 / AM.5.H.3V.P1(Δp=10bar) Hydrostats 2 or 3 way.

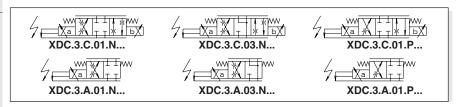
E = Manual override P1 = Rotary emergency button Q5 = External draining hole for XDP5 variante Q5 only (Screws: material specifications 12.9 must be used) GSQ = Square section seal GSQ Q25981014/ OR 2-017/90SH) Fixing screws UNI 5931 M6x40 (12.9 material screws are recommended) LQ5 (OR 2025/2-010 N552 90SH) Tightening torque 8 ÷ 10 Nm / 0.8 ÷ 1 Kgm max. 160.75 Support plane specifications

"D19P" PROPORTIONAL SOLENOIDS

-0.03

Type of protection (in relation to connector used) IP 65
Ambient temperature	-54°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	н
Weight	1,58 Kg
E	TD19P - 01/2002/e

XDC.3002	
PROPORTIONAL SOLENOID	Ch. VIII page 9
SE.3.AN21.RS03	Ch. IX page 13
AM.3.H	Ch. VIII PAGE 16
AM.5.H	Ch. VIII PAGE 17
BC.3.07	Ch. VII page 12


XDC.3... Proportional directional valves **CLOSED LOOP POSITION CONTROL**

The valves XDC serie 2 control the direction and the volume of the flow according to the feeding current to the proportional solenoid. The position transducer type LDVT (inductive position transducer) monitors the actual position of the spool.

In the electronic card (type SE.AN.21.RS...serie 3) the error between the actual position and the reference signal is used to obtain a greater precision of the spool positioning, reducing also considerably the hysteresis and the repeatibility error of the valve. For a more accurate flow control, 2 or 3-way pressure compensators modular plate design are available.

The shown flow rates are typical for one line operation (e.g. from P to B). By using the valve with the base for capacity doubling type BC.3.07 greater capacity can be obtained.

Registered mark for industrial environment with reference to the electromagnetic compatibility.

European norms: EN50082-2 - general safety norm - industrial environment; EN50081-1 -emission general norm - residential environment

ORDERING CODE

XDC

Proportional directional valve with closed loop position control

CETOP 3/NG6 3

**

A = Single solenoid

C = Double solenoid

Type of spool (null position)

Flow path control (see hydraulic symbols table)

N = symmetrical

P = meter in (only with 01 spool)

Flow rating I/min (∆p 10 bar)

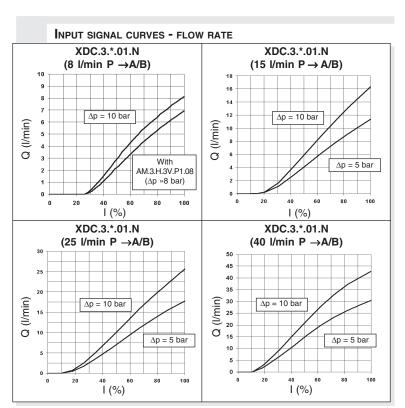
1 = 8 l/min

2 = 15 l/min 3 = 25 l/min

6 = 40 l/min 4

In order to reduced the unloading pressure for rated flow version at 40 l/min we advise to use the 3 way type AM.5.H.3V... hydrostat.

Max. current at solenoid: 1.76 A


No variant

Serial No.

Notice:

in order to control the valve XDC3...serie 2 it need to use the electronic card SE.AN.21.RS...serie 3, in exclusive way (See Ch. IX).

CONFIGURATION FOR DOUBLE FLOW RATE XDC.3.A... BC.3.07 Standard subplate

LVDT

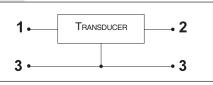
XDC.3... PROPORTIONAL DIRECTIONAL VALVES CLOSED LOOP POSITION CONTROL

OPERATING SPECIFICATIONS OF VALVE WITH TRANSDUCER

Max. operating pressure ports P/A/B	350 bar
Dynamic pressure port T	210 bar
Static pressure port T	210 bar
Nominal flow	8 / 15 / 25 / 40 l/min
Duty cycle	Continuous 100% ED
Type of protection (depending on the connectors used)	IP 65
Performance curves	See diagrams
Fluid viscosity	10 ÷ 500 mm ² /s
Fluid temperature	-20°C ÷ 75°C
Ambient temperature	-20°C ÷ 70°C
Max. contamination level class 7 to 9 in accordance to NAS	10
Weight XDC.3.A (single solenoid)	1,94 Kg
Weight XDC.3.C (double solenoid)	2,55 Kg
Max. current	1.76 A
Solenoid coil resistance at 20°C (68°F)	4.55 Ω
Solenoid coil resistance when hot	7.34 Ω
Hysteresis P/A/B/T with pressure compensator AM.3.H.3V	<1%
Transient function with stepped electrical input signals $\Delta p = 5$ bar (PA)	(A)
0 ÷ 100%	65 ms
100% ÷ 0	75 ms
Repeatibility	<0,5%
Frequency response -3db (Input signal ±25% Vmax)	10 Hz
Insulation class wire	Н
Weight of solenoid	0,6 Kg

Operating specifications are valid for fluids with 46 mm²/s viscosity at 40°C, using the

SE3AN21RS... serie 3 ARON electronic control unit powered to 24V.


AMPLIFIER UNIT AND CONTROL

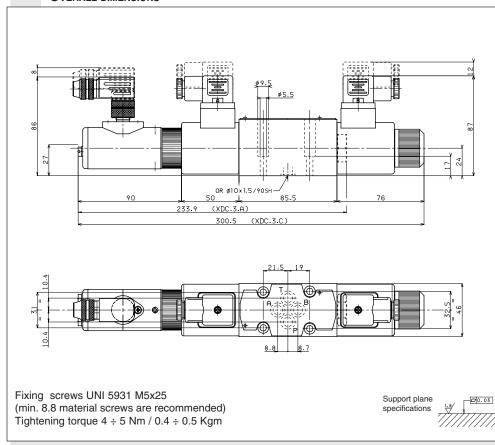
SE.3.AN.21.RS...serie 3 - Electronic card EUROCARD format for control of the proportional valve equipped with transducer

AM.3.H.2V.P1 / AM.3.H.3V.P1 AM.5.H.3V.P1 (*)

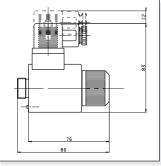
Hydrostats 2 or 3 way
(*) for rated flow XDC3 version at 40 l/min) only

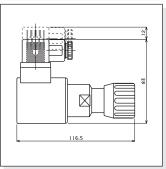
TRANSDUCER ELECTRICAL CONNECTIONS

- 1 = Supply 18VDC ÷ 36VDC
- 3 = Mass
- 2 = Output 2V ÷ 10V


Electrical measuring eyetem

POSITION TRANSDUCER SPECIFICATION

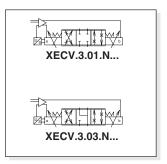

Liectifical frieasuring system	LVDI
Nominal stroke	6 mm
Electrical connection	M12x1
Insulation	
(depending on the connector used)	IP65
Frequency response	500 Hz
Linearity tolerance	±1%


PROPORTIONAL SOLENOID

OVERALL DIMENSIONS

SOL XDC - 01/2000/e

XECV.3	
AM.3.H	Ch. VIII page 16
AM.5.H	Ch. VIII page 17
BC.3.07	Ch. VII page 12


XECV.3... CLOSED LOOP PROPORTIONAL VALVE WITH ELECTRONIC ON BOARD

The proportional directional valves XECV are designed as direct operated components for subplate mounting. They are actuated by means of proportional solenoids with central thread and removable coil. The position of the spool is controlled by integrated control electronics and LVDT linear transducer sensor.

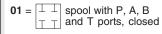
Features:

- Integrated control electronics
- Setup parameters by CAN interface
- Current compensation, gain current and ramps setting
- Monitoring of the valve by real time scope interface

European norms: EN 61000 - ElectroMagnetic Compatibility (EMC) - industrial environment

ORDERING CODE

XECV


Position loop proportional valve with integrated electronics 24Vdc

3

CETOP 3/NG6

Type of spool

spool with P port closed, and A, B, T ports connected

Symmetrical flow control

Flow rating at ∆p 8bar

- **0** = 4 l/min
 - **1** = 8 l/min
 - 2 = 15 l/min
 - 3 = 25 l/min
 - **6** = 36 l/min (we advise to use the hydrostat AM5H3VP108)

CAN bus communication

S = standard ARON

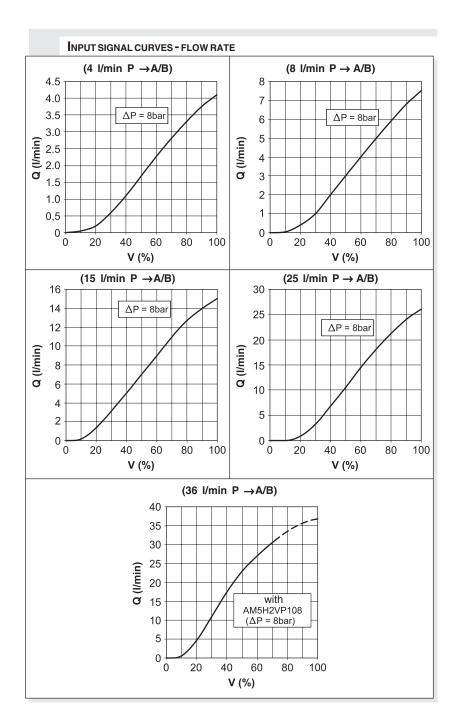
Command Enable

E = with external command Enable **W** = without external command Enable

*

Type command

V = signal voltage ± 10V

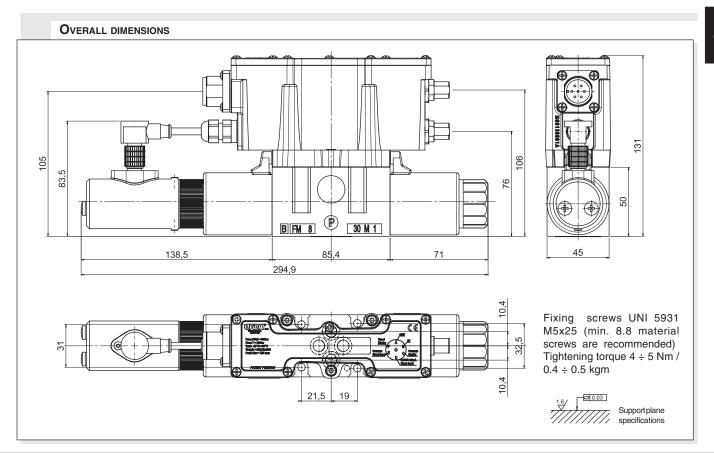

C = signal current 4... 20mA

00

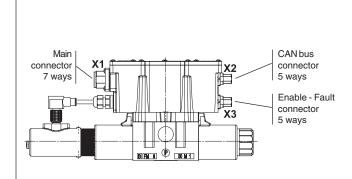
No variants

1

Serial No.

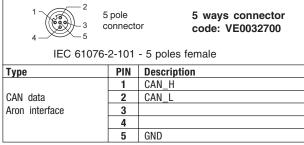

XECV.3... CLOSED LOOP PROPORTIONAL VALVE WITH ELECTRONIC ON BOARD

STEP RESPONSE ($\Delta p = 8 \text{ bar P/A}$) 0 ÷ 100% 100 80 **Stroke (%)** 20 0 + 16 40 Time (ms) 100% ÷ 0 100 80 **Stroke (%)**00 09 20 0 + 4 12 16 20 24 Time (ms)

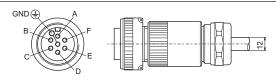

OPERATING SPECIFICATIONS OF VALVE WITH TRANSDUCER

_		
	Installation	must keep horizontal
	Max. operating pressure ports P/A	A/B 350 bar
	Dynamic pressure port T	210 bar
	Static pressure port T	210 bar
	Nominal flow	4 / 8 / 15 / 25 / 36 l/min
	Performance curves	See diagrams
	Fluid temperature	-20 ÷ 75°C (preferably 40 ÷ 50°C)
	Fluid viscosity	10 ÷ 500 mm ² /s
	Max. contamination level cla	ass 7 to 9 in accordance to NAS 1638 with filter $\beta_{10} \ge 75$
	Weight	2.76 kg
Ī		
	Nominal supply voltage	24Vdc
	Input signal range (see ordering of	eode) ± 10V or 4 20mA
	Supply voltage lower limit	18V
	Supply voltage upper limit	36V
	Peak power	50W
	Max. coil temperature	150 °C
	Duty cycle	Continuous 100% ED
	Hysteresis	< 0.1%
	Response sensitivity	< 0.1%
	Repeatibility	<0,1%
	Frequency response -3dB (Input	,
	Enable input command	0V = valve not active 24V = valve active
	Fault signal output	0V = failure or not working valve 24V = valve OK
	Spool position monitor	± 10V
	Ambient temperature range	-20 ÷ 60°C
	Type of protection	IP 65

Operating specifications are valid for fluids with 46 mm²/s viscosity at 40°C.



ELECTRICAL CONNECTIONS


- A positive command value 0 to +10V (or 12 to 20mA) at D and the reference potential at E, results in a flow from P to A and B to T.
- A negative command value 0 to -10V (or 12 to 4mA) at D and the reference potential at E, results in a flow from P to B and A to T.

X2*: 5 ways M12 connector, CAN communication (to be ordered separately)

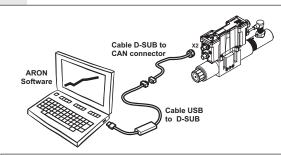
*Connection cable recommended: up to 50m cable length type LiYCY 7x0.75 mm². For outside diameter see plug-in connector sketch. Only connect screen to PE on the supply side.

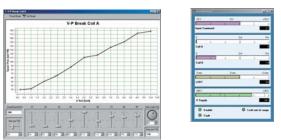
X1: Main connector 7 ways (supplied with the valve)

DIN EN 175201-804 - 7 poles female

Type	PIN	Description	
Main power supply	Α	+24Vdc	
	В	OV / common supply	
OV / common of signal monitor	C	OV / common of signal monitor	
Input of differential signal command	D	± 10V or 420mA	
	E	OV / common	
Output of signal monitor	F	\pm 10V (10V = full stroke)	
	GND	GND	

Connection cable recommended: up to 50m cable length type LiYCY 7x1.0 mm². For outside diameter see plug-in connector sketch. Only connect screen to PE on the supply side.

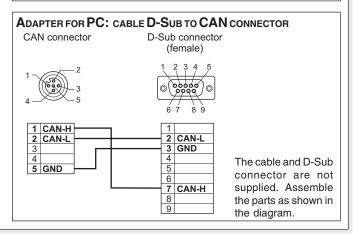

X3*: 5 ways M12 connector, Enable and Fault digital command (to be ordered separately)


IEC 61076-2-101 - 5 poles female

Туре	PIN	Description
Digital output signal	1	Connects to +24Vdc
of valve FAULT	2	Signal out: 0V = failure of electronic control 24V = valve 0K
Input digital command	3	Connects to 0V
of ENABLE valve	4	Connects to +24V to enable the valve
	5	

ARON SOFTWARE AND CABLES

ARON INTERFACE FOR SETUP PARAMETERS


Aron Firetune software code: P35150005

For further informations about Aron Firetune read the manual. The software is included with valve supply.

ADAPTER FOR PC: CABLE USB TO D-SUB

Model: KVASER Leaf light HS (not supplied, commercial parts)

V			
	XEPV.3		
AM.3.H	Ch. VIII page 16		
AM.5.H	Ch. VIII page 17		
BC.3.07	Ch. VII page 12		
ORDERING CODE			
XEPV	VEDV Current lean proportional wall to with		
VEPA	Current loop proportional valve with integrated electronics 24Vdc		
3	CETOP 3/NG6		

Type of spool

Symmetrical flow control

Flow rating at Δp 8 bar

6 = 36 l/min (we advise to use

CAN bus communication

S = standard ARON

Command Enable

Type command

No variants

Serial No.

 $V = \text{signal voltage} \pm 10V$

C = signal current 4... 20mA

0 = 4 l/min

1 = 8 l/min2 = 15 l/min

3 = 25 l/min

Ν

*

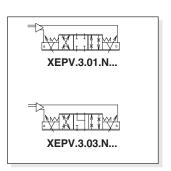
S

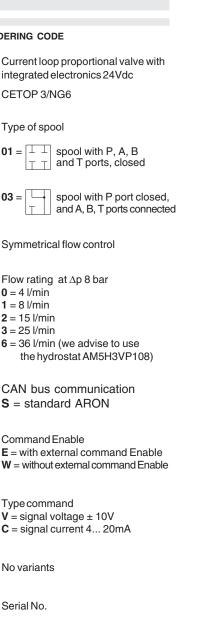
00

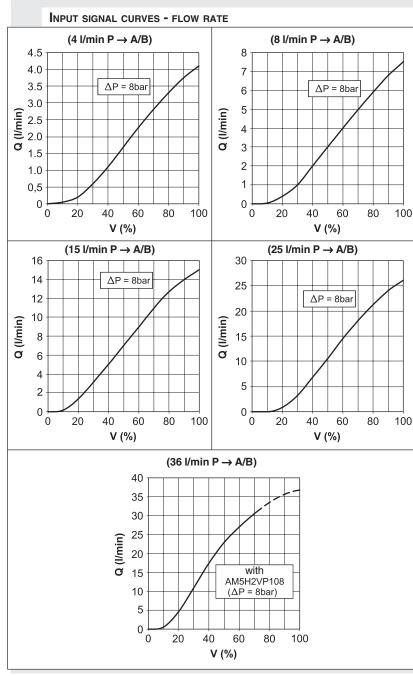
1

spool with P, A, B

and T ports, closed


XEPV.3... Proportional Valve with ELECTRONIC ON BOARD




The proportional directional valves XEPV are designed as direct operated components for subplate mounting. They are actuated by means of proportional solenoids with central thread and removable coil. The solenoids are controlled by integrated control electronics.

- Integrated control electronics
- Setup parameters by CAN interface
- Current compensation, gain current and ramps setting
- Monitoring of the valve by real time scope interface

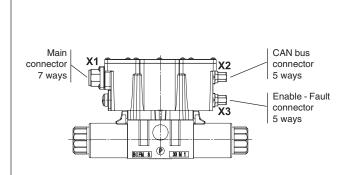
European norms: EN 61000 - ElectroMagnetic Compatibility (EMC) - industrial environment

STEP RESPONSE ($\Delta p = 8 \text{ bar P/A}$) 0 ÷ 100% 100 80 60 Stroke (%) 20 0 20 30 40 50 60 Time (ms) 100% ÷ 0 100 80 Stroke (%) 60 40 20 0 12 16 20 24 28 0 4

Time (ms)

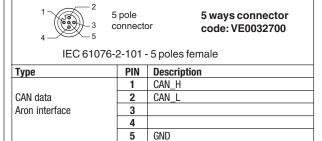
OPERATING SPECIFICATIONS OF VALVE WITH TRANSDUCER

Installation must keep horizontal Max. operating pressure ports P/A/B 350 bar Dynamic pressure port T 210 bar Static pressure port T 210 bar Nominal flow 4 / 8 / 15 / 25 / 36 l/min Performance curves See diagrams -20 ÷ 75°C (preferably 40 ÷ 50°C) Fluid temperature Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ class 7 to 9 in accordance to NAS 1638 with filter $\beta_{10} \ge 75$ Max. contamination level Weight 2.45 kg

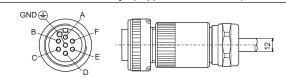

Nominal supply voltage 24Vdc Input signal range (see ordering code) ± 10V or 4... 20mA Supply voltage lower limit 18V Supply voltage upper limit 36V 50W Peak power Max. coil temperature 150 °C Duty cycle Continuous 100% ED Hysteresis < 5% Response sensitivity < 0.5% Repeatibility <0.5% Enable input command 0V = valve not active 24V = valve active 0V = failure or not working valve 24V = valve OK

Fault signal output 0V = failure or not working valve 24V = valve OKCurrent monitor $\pm 10V$ Ambient temperature range $-20 \div 60^{\circ}\text{C}$ Type of protection IP 65

Operating specifications are valid for fluids with 46 mm²/s viscosity at 40°C.


OVERALL DIMENSIONS 131 90 105 9/ 9/ 20 B FM 8 30 M 1 85,4 71 71 227,4 Fixing screws UNI 5931 M5x25 (min. 8.8 material screws are recommended) Tightening torque 4 ÷ 5 Nm / $0.4 \div 0.5 \text{ kgm}$ Support plane 21,5 19 specifications

ELECTRICAL CONNECTIONS


- A positive command value 0 to +10V (or 12 to 20mA) at D and the reference potential at E, results in a flow from P to A and B to T.
- A negative command value 0 to -10V (or 12 to 4mA) at D and the reference potential at E, results in a flow from P to B and A to T.

X2*: 5 ways M12 connector, CAN communication (to be ordered separately)

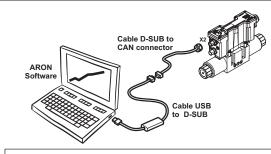
^{*} Connection cable recommended: up to 50m cable length type LiYCY 7x0.75 mm². For outside diameter see plug-in connector sketch. Only connect screen to PE on the supply side.

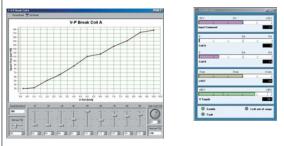
X1: Main connector 7 ways (supplied with the valve)

DIN EN 175201-804 - 7 poles female

Туре	PIN	Description	
Main power supply	Α	A +24Vdc	
	В	OV / common supply	
OV / common of signal monitor	C	OV / common of signal monitor	
Input of differential signal command	D	± 10V or 420mA	
	E	0V / common	
Output of signal monitor	F	± 10V (10V = max current)	
	GND	GND	

Connection cable recommended: up to 50m cable length type LiYCY 7x1.0 mm². For outside diameter see plug-in connector sketch. Only connect screen to PE on the supply side.


X3*: 5 ways M12 connector, Enable and Fault digital command (to be ordered separately)


IEC 61076-2-101 - 5 poles female

Туре	PIN	Description
Digital output signal	1	Connects to +24Vdc
of valve FAULT	2	Signal out: 0V = failure of electronic control 24V = valve 0K
Input digital command	3	Connects to 0V
of ENABLE valve	4	Connects to +24V to enable the valve
	5	

ARON SOFTWARE AND CABLES

ARON INTERFACE FOR SETUP PARAMETERS

Aron Firetune software code: P35150005

For further information about Aron Firetune read the manual. The software is included with valve supply.

ADAPTER FOR PC: CABLE USB TO D-SUB

Model: KVASER Leaf light HS (not supplied, commercial parts)

ADAPTER FOR PC: CABLE D-SUB TO CAN CONNECTOR CAN connector D-Sub connector (female) 1 2 3 4 5 6 7 8 9 1 CAN-H 2 CAN-L 3 GND 4 The cable and D-Sub connector are not supplied. Assemble the parts as shown in the diagram.

8

AM.3.H...

AM.3.H... 2 AND 3 WAY HYDROSTATS CETOP 3

The 2 or 3 way pressure regulator type AM.3.H ensure the constant set flow rate in the presence of varying system load (pressure) by keeping constant the pressure drop ($\Delta p = 4/8$ bar) in relation to the flow rate regulation.

In order to achieve the direction and flow rate dual control function, it is normally used together with a proportional solenoid valve

Max. flow 25 l/min Max. operating pressure 350 bar ∆p adjustment 4 bar 8 bar 10 ÷ 500 mm²/s Fluid viscosity -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 8 in accordance with NAS 1638 with filter $\beta_{10} \ge 75$ 1,4 Kg Weight

ORDERING CODE

AM

Modular valve

3

CETOP 3/NG6

H)

Hydrostat

**

2V = 2 way

3V = 3 way

P1

Function at port P

**

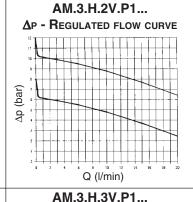
Differential pressure (∆p)

04 = $\Delta p \, 4 \, bar$

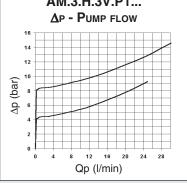
 $08 = \Delta p \ 8 \ bar$

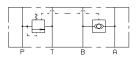
**

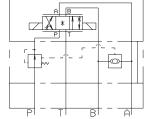
1


00 = No variant

V1 = Viton


Serial No.


AM.3.H.2V.P1...


FLOW - LOAD PRESSURE CURVE

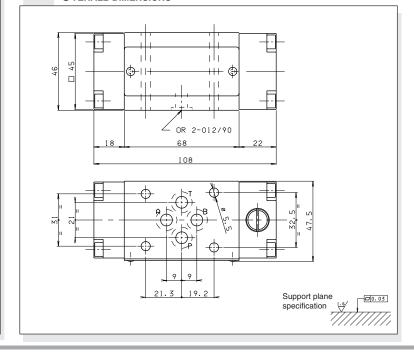
AM.3.H.2V.P1...

AM.3.H.3V.P1...

Proportional valve XD.3.C...

Hydrostat AM.3.H.2V...

BASE


Proportional valve XD.3.C...

Hydrostat AM.3.H.3V...

BASE

OVERALL DIMENSIONS

P (bar)

AM.5.H...

AM.5.H... 2 AND 3 WAY HYDROSTATS CETOP 5

The 2 or 3 way pressure regulator type AM.5.H ensures a constant set flow rate in the presence of varying system load (pressure) by keeping constant the pressure drop ($\Delta p = 8$ bar) in relation to the flow rate regulation.

In order to achieve the direction and flow rate dual control function, it is normally used together with a proportional solenoid valve. Max. flow AM.5.H.2V... 65 l/min Max. flow AM.5.H.3V... 70 l/min Max. operating pressure 350 bar ∆p adjustment 8 bar Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 8 in accordance with NAS 1638 with filter $\beta_{10} \ge 75$ 2,7 Kg Weight

ORDERING CODE

AM)

Modular valve

5

CETOP 5/NG10

Н

Hydrostat

**

2V = 2 way

3V = 3 way

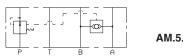
P1

Function at port P

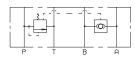
80

Differential pressure (Δp)

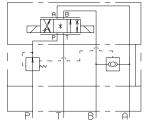
∆p 8 bar


**)

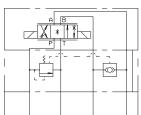
00 = No variant


V1 = Viton

1


Serial No.

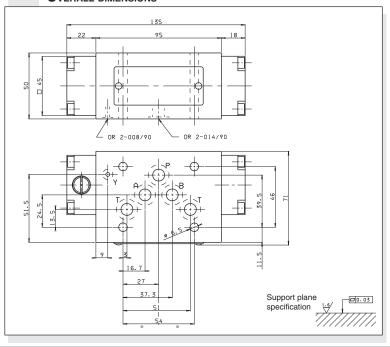
AM.5.H.2V.P1...


AM.5.H.3V.P1...

Proportional valve XD.5.C...

Hydrostat AM.5.H.2V...

BASE


Proportional valve XD.5.C...

Hydrostat **AM.5.H.3V...**

BASE

OVERALL DIMENSIONS

XQ.3			
"D15P" PROPORT. SOLENOIDS	Ch. VIII PAGE 19		
REM.S.RA	Ch. IX page 4		
SE.3.AN21.00	Ch. IX page 11		
BC.3.08 / BC.3.09			
BC.06.XQ3	Ch. VII PAGE 13		

ORDERING CODE

XQ

Proportional flow control valve

3

No. of way

С

Pressure compensation

3

CETOP 3/NG6

Flow rates F = 5 l/min

G = 10 l/min

H = 16 l/min

I = 28 I/min

M = With manual pressure limiter S = Without manual pressure limiter

Setting ranges $1 = 8 \div 50 \text{ bar}$

 $2 = 25 \div 170 \text{ bar}$

 $3 = 50 \div 315 \text{ bar}$

Omit for XQ.3.C.*.S version

E = With rotary emergency (type **P1**)

S = Without rotary emergency

Voltage

E = 9VDC (2,35 A)

F = 12VDC (1.76 A)

G = 24VDC (0.88 A)

**

00 = No variant

L5 = emergency lever

P5 = Rotary emergency180°

V1 = Viton

2

Serial No.

XQ.3... Proportional flow control **VALVES PRESSURE COMPENSATED CETOP 3**

This is a proportional valve where both the flow rate and pressure control flow functions have been integrated according to the 3 way regulation concept.

The interface UNI ISO 4401 - 03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03) allows for direct mounting on modular block or multiple sub-bases, which makes possible many advantageous and extremely compact application solution as a consequence of their simplicity of installation.

The 3 way type pressure compensator, inserted into the valve, holds the pressure drop across the flow rate proportional regulator constant (approx. 8 bar) independently from the controlled load variations, whereby ensuring proportional between the set flow rate and the electrical

Additionally, the system maximum safety pressure can be regulated through a manual command. This valve, if mounted on the feed line to the manifold block, can be used to control several circuits which are not operating at the same time.

DIAGRAMS INPUT SIGNAL ΔP - PUMP FLOW RATE FLOW RATE (bar) Q (I/min) Δ Qp (l/min) I (%) LOAD PRESSURE CUTOFF PRESSURE (M) Qa = 25 (I/min)*FLOW RATE Q (l/min) P (bar) P (bar)

The fluid used is a mineral based oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

(*) Tested with 25 l/min supply

Table 1 - Flow / PRESSURE SPECIFICATIONS

Model Hydraulic symbol	Max flow rate (I/min)	Max flow in P (I/min)	Max limiter pressure (bar)	Max load pressure (bar)	Δp Control (bar)
XQ.3.C.3.*.M	5 10 16 28	40	8÷50 25÷170 50÷315	250	8
XQ.3.C.3.*.S	5 10 16 28	40		250	8

XQ.3... Proportional flow control valves pressure compensated

2.25 Ohm

Max. operat. pressure ports A/B / With P port blocked on subplate 315 bar Max. operating pressure ports T - for dynamic pressure see note (*) 250 bar Regulated flow rate See diagram page before Relative duty cycle Continuous 100% ED IEC 144 class IP 65 Type of protection Flow rate gain See diagrams Hysteresis with connection P/A/B/T $\Delta p = 5$ bar (P/A) 4% of max. flow rate 10 ÷ 500 mm²/s Fluid viscosity Fluid temperature Max. contamination level NAS 1638 with filter B₄₀≥75 Weight version XQ.3.C.*.M... 2,89 Kg Weight version XQ.3.C.*.S... 9V 12V 24V Type of voltage Max. current 1.76 A 0.88 A 2.35A

-20°C ÷ 75°C class 8 in accordance with

2,39 Kg

16.0 Ohm

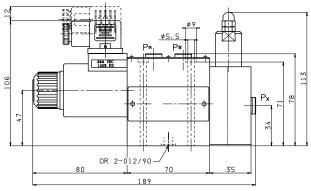
(*) Pressure dynamic allowed for 2 millions of cycles.

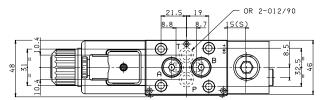
Solenoid coil resistance at 25°C (77°F)

ELECTRONIC CONTROL UNIT

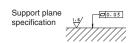
REM.S.RA.*.*.

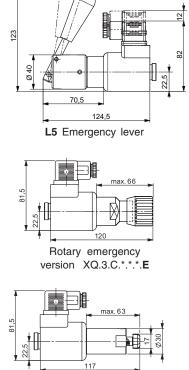
Card type control for single solenoid


SE.3.AN.21.00...

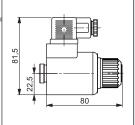

EUROCARD type control for single solenoid

• Operating specifications are valid for fluid with 46 mm²/s viscosity at 40°C, using the specified ARON electronic control units


TYPICAL INSTALLATION XQ3. C3... BC 3 09 00 17 BM. 3. **. **OVERALL DIMENSIONS**


4.0 Ohm

Fixing screws UNI 5931 M5x80 (min. 8.8 material screws are recommended) Tightening torque 4 ÷ 5 Nm / 0.4 ÷ 0.5 Kgm



P5 Rotary emergency 180°

() aran

"D15P" PROPORTIONAL SOLENOIDS

IP 66 100% ED Н 0,354 Kg 0,608 Kg

XQP.3		
"D15P" PROPORT. SOLENOIDS	Ch. VIII PAGE 21	
REM.S.RA	Ch. IX page 4	
SE.3.AN.21.00	Ch. IX page 11	
BC.06.XQP3	Ch. VII page 13	

ORDERING CODE

Open loop 2/3 way proportional compensated flow regulator

3 CETOP 3/NG6

3

2/3 way compensation with priority function

3 way version (standard)
For to obtain 2-way version the P line
must be closed on the subplate

Nominal flow rates

 $\mathbf{F} = 6 \text{ l/min}$

G = 12 l/min

H = 22 l/min

I = 32 l/min

L = 40 l/min

S = without decompression

 $\mathbf{D} = \text{with decompression}$

Max. current to solenoid

E = 2.35 A

F = 1.76 A

G = 0.88 A

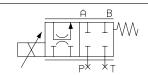
00 = No variant

P1 = Rotary emergency

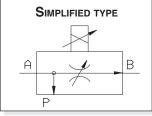
P5 = Rotary emergency 180°

V1 = Viton

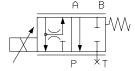
Serial No.


2

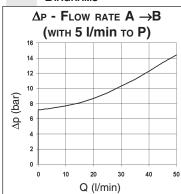
XQP.3... OPEN LOOP 2/3 WAY PROPORTIONAL PRESSURE COMPENSATED FLOW REGULATORS

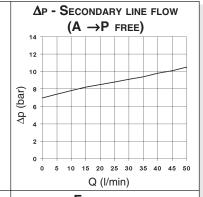

The open loop proportional flow regulator is 2 and 3 way compensated with priority function. It is designed to regulate flow in proportion to an applied electrical current (REM or SE3AN power amplifier). Flow regulation is load independent - B port. Load compensation is achieved by a spool compensator which holds the pressure drop constant across the proportional spool.

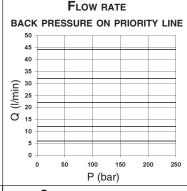
Valves are available in the following versions (see hydraulic symbol):

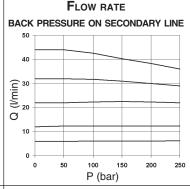

- 2 way pressure compensated 3 way pressure compensated with priority function.
- 3 way pressure compensated with priority and venting function.

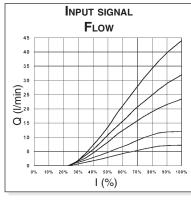
 In order to obtain the 2 way pressure compensated version the cavities P and T have be closed on the subplate.

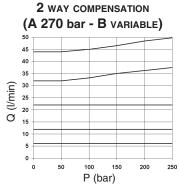


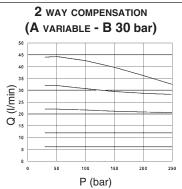

HYDRAULIC SYMBOLS




 In order to obtain the 3 way pressure compensated version the cavity T have be closed on the subplate.


DIAGRAMS





The fluid used is a mineral based oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

() aron

XQP.3... OPEN LOOP 2/3 WAY PROPORTIONAL PRESSURE

COMPENSATED FLOW REGULATORS

OPERATING SPECIFICATIONS

Max. operat. pressure ports A/B /P see note (*) With T port blocked on subplate 250 bar Regulated flow rate 6 / 12 / 22 / 32 / 40 l/min Decompression drain flow max 0,7 l/min

Relative duty cycle

Type of protection (in relation to the connector used)

Flow rate gain Fluid viscosity Fluid temperature

Ambient temperature Max. contamination level

See diagram "Input signal flow" 10 ÷ 500 mm²/s from class 7 to 9 in accordance with NAS 1638 with filter B₁₀≥75

Continuous 100% ED

-20°C ÷ 75°C

-20°C ÷ 70°C

Weight

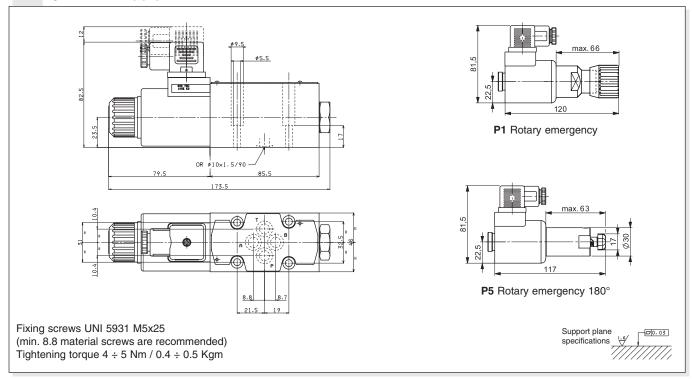
Max. current	2.33A	1.76 A	0.88 A
Solenoid coil resistance at 25°C (77°F)	2.25 Ohm	4.0 Ohm	16.0 Ohm
Hysteresis with Δp 7 bar	≤5 %	<5%	<8%
Response to step $\Delta p = 7$ bar			
0 ÷ 100%	32 ms	40 ms	85 ms
100% ÷ 0	33 ms	33 ms	33 ms
Frequency response -3db (Input signal 50%	± 25% Vmax.)		
	22Hz	22Hz	12Hz
100% ÷ 0	33 ms 5 ± 25% Vmax.)	33 ms	33 ms

(*) Pressure dynamic allowed for 2 millions of cycles

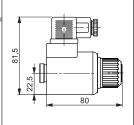
Operating specifications are valid for fluids with 46 mm²/s viscosity at 40°C, using specified ARON electronic control units.

Performance data are carried out using the specified Aron power amplifier SE.3.AN... powered to 24V.

AMPLIFIER UNIT AND CONTROL


REM.S.RA.*.*...

Electronic card for control single proportional solenoid valve


SE.3.AN.21.00...

Electronic card format EUROCARD for control single proportional solenoid valve

OVERALL DIMENSIONS

"D15P" PROPORTIONAL SOLENOIDS

Type of protection (in relation to connector used)	IP 66
Duty cycle	100% ED
Insulation class wire	н
Weight (coil)	0,354 Kg
Weight (solenoid)	0,608 Kg
	ETD15P - 01/2002/e

XQP.5...

"D19P" PROPORT. SOLENOIDS CH. VIII PAGE 23 REM.S.RA... Ch. IX PAGE 4

ORDERING CODE

XQP Open loop 2/3 way proportional compensated flow regulator

3

**

1

5 CETOP 5/NG10

C 2/3 way compensation with priority function

3 way version (standard) For to obtain 2-way version the P line must be closed on the subplate

Nominal flow rates

E = 45 l/min

 $\mathbf{F} = 75 \text{ l/min}$

G = 105 l/min

S = without decompression

D = with decompression

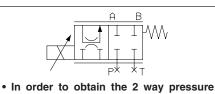
Voltage

 $\mathbf{F} = 12V DC$

G = 24V DC

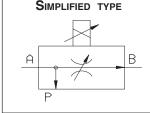
00 = No variant

V1 = Viton


Serial No.

XQP.5. OPEN LOOP 2/3 WAY PROPORTIONAL PRESSURE COMPENSATED FLOW REGULATORS CETOP 5

The open loop proportional flow regulator is 2 and 3 way compensated with priority function. It is designed to regulate flow in proportion to an applied electrical current (REM power amplifier). Flow regulation is load independent - B port. Load compensation is achieved by a spool compensator which holds the pressure drop constant across the proportional spool.


Valves are available in the following versions (see hydraulic symbol):

- 2 way pressure compensated
- 3 way pressure compensated with priority function.
- 3 way pressure compensated with priority and venting function.

compensated version the cavities P and T

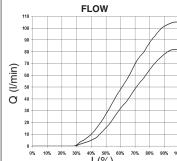
Symbols **HYDRAULIC**

have be closed on the subplate. R

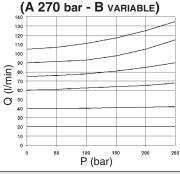
• In order to obtain the 3 way pressure compensated version the cavities T have be closed on the subplate.

DIAGRAMS

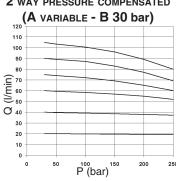
 $\Delta P - Flow RATE A \rightarrow B$ (wiтн 5 I/min то P) 20 par) ₫10 30 40 (I/min)


ΔP - SECONDARY LINE FLOW $(A \rightarrow P FREE)$ (bar) 12 δ Q (I/min)

FLOW RATE BACK PRESSURE ON PRIORITY LINE


110 100 (I/min) 60 50 Ø 40 P (bar) 150

FLOW RATE **BACK PRESSURE ON SECONDARY LINE** 100 (l/min) 60 ŏ 40 20 P (bar)


INPUT SIGNAL

2 WAY PRESSURE COMPENSATED

2 WAY PRESSURE COMPENSATED

The fluid used is a mineral based oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

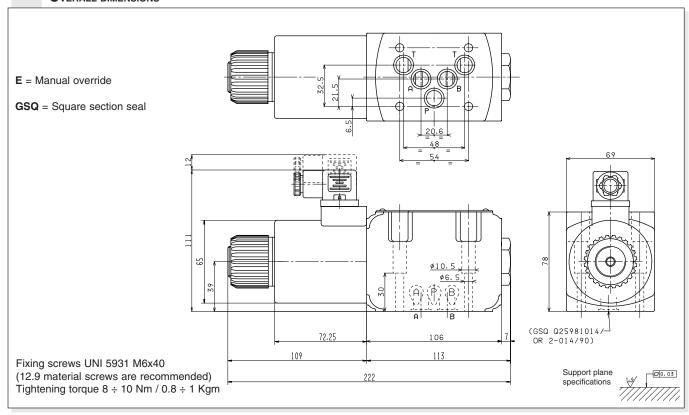
XQP.5. OPEN LOOP 2/3 WAY PROPORTIONAL PRESSURE COMPENSATED FLOW REGULATORS CETOP 5

OPERATING SPECIFICATIONS

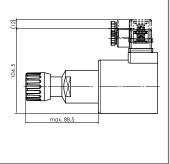
Max. operating pressure ports A/B /P (*) 250 bar Regulated flow rate 75 / 105 l/min Decompression drain flow max 0,7 l/min Relative duty cycle Continuous 100% ED Type of protection (in relation to the connector used) IP 65 Flow rate gain See diagram "Input signal flow" Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -20°C ÷ 75°C -20°C ÷ 60°C Ambient temperature Max. contamination level from class 7 to 9 in accordance with NAS 1638 with filter β₁₀≥75 4,97 Kg Weight 12V Type of voltage 24V Max. current 2.5 A 1.25 A Solenoid coil resistance at 20°C (68°F) 2.85 Ohm 11.4 Ohm Hysteresis with Δp 7 bar <5% <8% Response to step $\Delta p = 7$ bar (P/A) 0 ÷ 100% ~ 65 ms 100% ÷ 0 ~ 30 ms Frequency response -3db (Input signal 50% ± 25% Vmax.) 7Hz

AMPLIFIER UNIT AND CONTROL

REM.S.RA.*.*...


Electronic regulator for control single proportional solenoid valve

(*) Pressure dynamic allowed for 2 millions of cycles. T ports closed on the subplate.


Operating specifications are valid for fluids with 46 mm²/s viscosity at 40°C, using specified ARON electronic control units.

Performance data are carried out using the specified Aron power amplifier type REM.S.RA... power supplied at 24V.

OVERALL DIMENSIONS

"D19P" Proportional solenoids

Type of protection (in relation to connector used)	IP 65
Ambient temperature	-54°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	Н
Weight	1,58 Kg
ETI	019P - 01/2002/e

XP.3...

REM.S.RA...

Ch. IX PAGE 4

V.M.P... / V.M.L... / V.M.P.E... Ch. II PAGE 6

ORDERING CODE

ΧP

Max. pressure valve

3

CETOP 3/NG6

1 = max. 50 bar **2** = max. 140 bar

3 = max. 320 bar

E = with manual limiter

S = without manual limiter

Voltage:

F =12V DC

G =24V DC

**

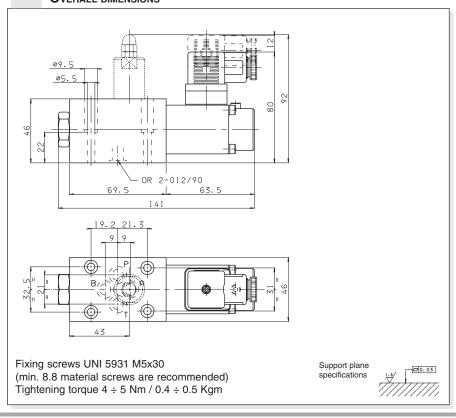
1

00 =No variant

V1 =Viton


Serial No.

XP.3... Proportional pressure CONTROL VALVES CETOP 3/NG6



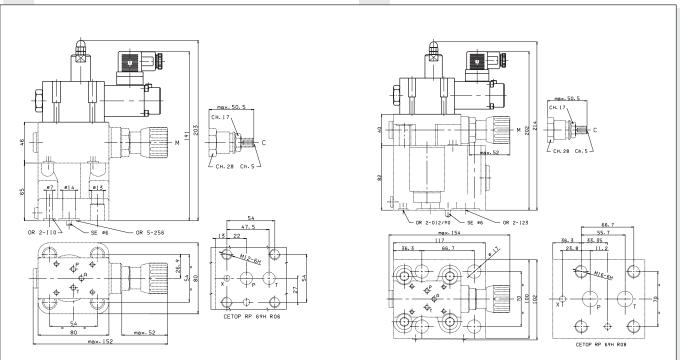
Proportional maximum pressure valves type XP.3.*.. are used to regulate a hydraulic circuit pressure by means of a variable electric signal. Their precise implementation allows for high and constant operational standard up to a maximum 2,5 l/min flow rate. A manually pressure limit setting version is also available, to protect the system from uncontrolled electrical signals.

· Other valves (e.g. subplate or in-line mounted valves) should be ordered separately.

OVERALL DIMENSIONS

Max. operating pressure (depend	ling on the flow rate)	350 bar
Max. flow		2,5 l/min
Max. ambient temperature		50° C
Linearity		See diagrams
Max. hysteresis		<3% of nominal value
Repeatibility error (between 150 a	nd 680 mA)	<2%
Resistance at 20°C (24V)		24.6 Ohm
Resistance at 20°C (12V)		7.2 Ohm
Max. resistance (ambient 20°C) (24V) at op. temp.	31 Ohm
Max. resistance (ambient 20°C) (12V) at op. temp.	9 Ohm
Max. current at (24V)		0.68A
Max. current at (12V)		1.25A
Type of protection		IEC 144 class IP 65
Max. contamination level	class 8 in accordance with NAS	1638 with filter B₁₀≥75
Fluid temperature		-20°C÷75°C
Fluid viscosity		10÷500 mm ² /s
Weight		1,4 Kg
Operating specifications are v	alid for fluids with 33 mm ² /s at	50°C, using specified

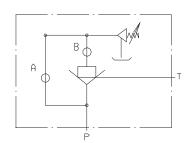
ELECTRONIC CONTROL UNITS


REM.S.RA.*.*.

Card type control for single solenoid 12V and 24V

Typical installation XP.3... + VMP.E.16...

ARON electronic control units.

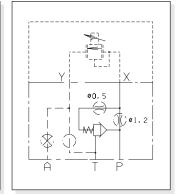

TYPICAL INSTALLATION XP.3... + VMP.E.25...

• WITH MOUNTING ON VMPE USE THE FOLLOWING CALIBRATED ORIFICES (SEE V.M.P.*. E VALVE AQ VARIANT)

VMP.E.16... $A = \emptyset 1 \text{ mm}$ $B = \emptyset 0,3 \text{ mm}$

VMP.E.25... $A = \emptyset$ 1,2 mm $B = \emptyset$ 0,5 mm

AM.3.XMP...


XP.3... Ch. VIII page 18

AM.3.XMP... AMPLIFIER VALVES FOR PROPORTIONAL CONTROL VALVES

Max. operating pressure 320 bar Max. flow 30 l/min Min. flow 2 l/min Max. ambient temperature 50° C Linearity See diagrams Max. hysteresis <3% of nominal value Repeatibility error (150 ÷ 680 mA) XP3... <3% Max contamination level class 8 in accordance with NAS 1638 with filter $\beta_{\scriptscriptstyle 10}{}^{\scriptscriptstyle 3}\!75$ Fluid temperature -20°C÷75°C 10÷500 mm²/s Fluid viscosity Weight 0,8 Kg

Operating specifications are valid for fluids with 33 mm²/s viscosity at $40\,^{\circ}\text{C},$ using Aron control units

Modular valve type AM.3.XMP... used together with the pressure proportional pilot type XP.3.. becomes a pressure control valve piloted by proportional command for rates up to 30 lt/min. The possibility of external drainage on A ensures its correct operation even with back pressure on the discharge side. Other valves types should be ordered separately.

ORDERING CODE

AM

Modular valve

3

CETOP 3/NG6

XMP

maximum proportional pressure

piessui

Spring 2 bar (standard)

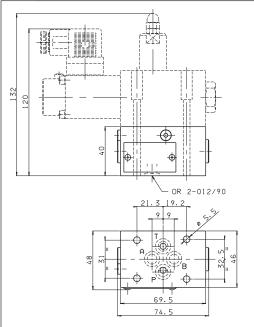
0

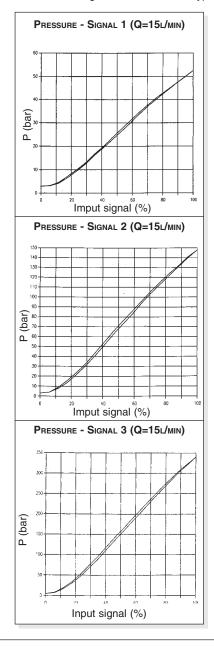
2

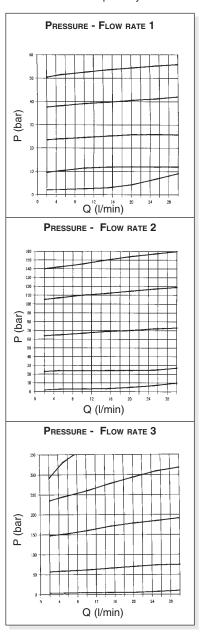
Standard dowels $(\emptyset 1,2 \text{ dia supply } \emptyset 0,5 \text{ dia damper})$

*

I = Internal drainage at TE = External draining at A


**


00 =No variant


V1 =Viton

Serial No.

OVERALL DIMENSIONS

Fixing screws UNI 593 M5x70 (min. 8.8 material screws are recommended) Tightening torque 4 ÷ 5 Nm / 0.4 ÷ 0.5 Kgm

02/2000/e

TECHNICAL ELECTRONICS **CATALOGUE ARON 2010**

ABBREVIATIONS

AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	Low pressure connection
С	Stroke (MM)
CH	Across flats
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I%	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
Р	LOAD PRESSURE (BAR)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	Pump flow (L/MIN)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

www.aron.it - sales@brevinifluidpower.com

General terms and conditions of sale: see website www.aron.it

ELECTRONICS

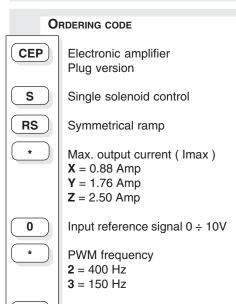
aron

CEP.S	
	CH. IX PAGE 2
REM.S.RA	
	CH. IX PAGE 4
REM.D.RA	
	Ch. IX page 7
SE.3.AN21	
	Ch. IX page 11
SE.3.AN21RS	
	Ch. IX page 13
SE3.LN3	
	Ch. IX page 15
SE.MNC	
	Ch. IX page 19
SVP	
	Ch. IX page 23
JC.3.D	.
10 - 0	Ch. IX page 27
JC.5.D	0 11/
10.55	Ch. IX page 29
JC.F.D	0 11/
	Ch. IX page 31

00

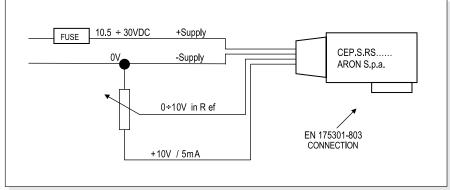
1

CEP.S.. ELECTRONIC AMPLIFIER PLUG VERSION FOR SINGLE SOLENOID PROPORTIONAL VALVE.


The electronic amplifier Plug version was designed in compliance whit EN 175301-803 (ex DIN43650), for direct mounting on the valve solenoid. The CEP.S can used whit proportional valves XD.*.A..., XDP.*.A..., XP.3..., XQP.*..., CXQ.3...

The output stage operates on the pulse width modulation principle (P.W.M.) and is provided with current feedback in order to obtain a solenoid output current proportional to the reference input signal.

Gain, minimum current and rise and fall ramp time adjustments are possible through the corresponding potentiometers fitted on top side of the card, and can be accessed by slackening the relative screw and opening the cover of the connector. While the output current to the solenoid can be measured via the Valve Current test points.


CEP.S... ELECTRICAL SPECIFICATIONS CH. IX PAGE 3 CALIBRATION PROCEDURE CH. IX PAGE 3 OVERALL DIMENSIONS CH. IX PAGE 3

RAMP Imin GAIN FREQ Current Test Point 1V = 1A

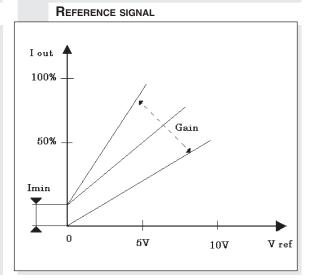
ELECTRICAL EN 175301-803 CONNECTIONS

SETTINGS TOPOGRAPHY

for industrial environment with reference to the electromagnetic compatibility. European norms:

No variant

Serial number


- EN61000-6-2 general safety norm industrial environment
- EN61000-6-4 emission general norm - residential environment
- Product in accordance with RoHS 2002/95/CE Europe Directive.

9

ELECTRICAL SPECIFICATIONS Power supply 12VDC o 24VDC 40VDC Peak supply Minimum power supply 10.5VDC Required power 30W IP65 Type of protection Output current Imax = 0.88AmpAll range values are come from the ordering code Imax = 1.76AmpImax = 2.50AmpExternal reference potentiometer +10V. Imax =5mA Input signal reference 0 ÷ 10V I minimum adjustment 0 ÷ 50% of Imax Gain adjustment 30% ÷ 100% of Imax Ramp time adjustment 0 ÷ 10 secondi Operating Ambient temperature -10C° ÷ +70°C Current test point 1V = 1AmpWeight Kg. 0, 250

CALIBRATION PROCEDURE

POWER SUPPLY AND ELECTRICAL CONNECTIONS

The power supply voltage must be rectified and filtered, whit a capacitor 4700 uF minimum. **Protect the power supply circuit whit 3 A fuse. Respect the polarity supply.** Use the cabling wire whit 0.75 mm² or 1.0 mm² section. In order to facilitate the operation of wires connection, extracts the card from the enclosure, introduce the wires through the gland-nut, connects the wires to the clips and finally to lodge the card to the inside of the connector.

CALIBRATION PROCEDURE

To connect correctly the card respecting the electrical connection topography, plug the amplifier on the valve solenoid and turn completely anticlockwise the trimming lmin, Gain, Ramp, and position the reference potentiometer on zero signal.

MINIMUMU CURRENT ADJUSTMENT

The Iminimum current allows to eliminate the mechanical overlapping of the valve also with the signal reference to 0 volt, if it is necessary to have the already open valve also with at null signal reference, to set up to 0 volt and turns slowly the Imin trimmer until an actuator movement.

GAIN CURRENT ADJUSTMENT

Turns the reference signal to its maximum setting (10 volt) and rotate slowly the (GAIN) trimming until the maximum required speed is obtained. If the system could be damaged by a to fast movement solenoid, turns clockwise the trimming Ramp time.

RAMP TIME ADJUSTMENT

The ramp time is the time taken to pass from the minimum to the maximum current value, and vice versa. It's adjustable from a minimum of 0s up to a maximum of 10s (to reach the maximum current value setted). Turning clockwise the trimming potentiometer, the ramp time increases.

Notes

The ramp fall time affects the actuator stop position. Moving the reference to zero Volt, the actuator goes on moving till the setted ramp time is elapsed. Therefore it's necessary to adjust it properly.

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product. The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Aron spa - Via Natta, 1 - 42124 Reggio Emilia (Italy) - Tel. +39 0522 5058 - Fax +39 0522 505856 - www.aron.it - sales@brevinifluidpower.com

REM.S.RA..

CALIBRATION PROCEDURE	CH. IX PAGE 5
OVERALL DIMENSIONS	CH. IX PAGE 10
MOUNTING BASES	Ch. IX page 10

ORDERING CODE

REM

Miniaturized electronic regulator in Octal type container

Single solenoid

Asymmetrical ramp

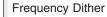
Maximum output current I MAX. (JU variant)

X = 0.88 Å (0.80 A)

Y = 1.76 A (1.20 A)

Z = 2.8 A

Input reference (V) see note (*) below


 $2 = 0 \div + 2 \text{ V}$

 $5 = 0 \div + 5 \text{ V}$

 $0 = 0 \div + 10 \text{ V}$

 $\mathbf{A} = 0 \div 20 \text{ mA}$

1 = 100 Hz (standard, JU var.)

2 = 330 Hz (for XP.3)

Minimum initial current

G = step (normally for XD.*. and XDP.3 valves) **C** = continuous (normally for XP.3, XQ.3, XQP.*.

and CXQ.3 valves)

00 = No variant

DJ = Double gain setpoint

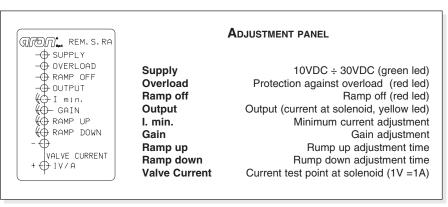
JU = for MHPF and MSPF electrohydraulics modules (directional valves HPV) Serial No.

4

(*) If the input reference is a current signal (mA) the regulator has to be pre-setted in the factory.

- CE registered mark for industrial environment with reference to the electromagnetic compatibility. European
- EN61000-6-2 general safety norm industrial environment
- EN61000-6-4 emission general norm
- residential environment
- Product in accordance with RoHS 2002/95/ CE Europe Directive.

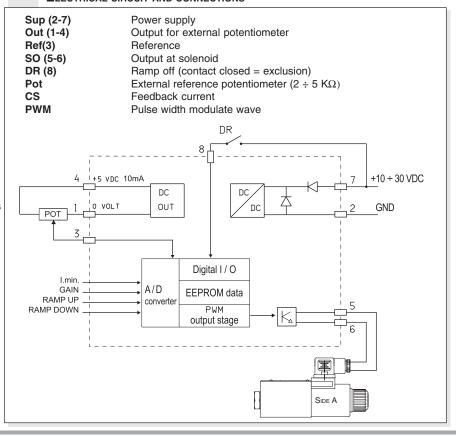
REM.S.RA... TYPE ELECTRONIC REGULATORS FOR SINGLE SOLENOID PROPORTIONAL CONTROL VALVES OFFOR


The electronic control card type REM.S.RA has been designed to drive the "XD.*.A, XDP.3.A, XP.3, XQ.3, XQP.*. and CXQ.3" series ARON single solenoid proportional valves without integral position transducer. The control card is enclosed in an "OCTAL" type housing, a typical relay mounting standard. The output stage operates on the pulse width modulation principle (P.W.M.) and is provided with current feedback in order to obtain a solenoid output current proportional to the reference input signal. Output short circuit and supply polarity inversion protection is provided.

Gain, minimum current and rise and fall ramp time adjustments are possible through the corresponding front panel trimming potentiometers, while the output current to the solenoid can be measured via the Valve Current test points, and the ramp operation can be excluded.

The product incorporates a serial interface for adjustment of parameters.

Pay attention please: electronic regulators must be used in dampness and water protected places.


The technical data and user manuals of DJ and JU variant are available by section "Products" on Internet site www.aron.it.

If any field is missing from the ordering code the standard setting is as follows:

- Input ref. = 0÷5V
- Dither 100Hz
- I_{min.} = continuous
- $-I_{max.} = 0.8A$

ELECTRICAL CIRCUIT AND CONNECTIONS

ELECTRONIC REGULATORS FOR SINGLE SOLENOID PROPORTIONAL CONTROL VALVES

DC S V W
W
8A
6A
A8
mΑ
2V
5V
0V
nΑ
nax
nax
sec
)°C
ere
Kg

REM.S.RA... Instructions for use

CALIBRATION PROCEDURE

Connect the card in the proper way following the previous page diagram but without powering it or in the way following the next page "Typical connections". Turn completely anticlockwise (20 turns about) the trimming potentiometers of Minimu Current (l_{\min}) and Ramp Time (Rampup and Ramp-down), and position the reference potentiometer on zero. Before powering the card, ensure that any unforeseen hydraulic system movement cannot cause material damage or injury to people. Power now the card; the green LED should light up.

MINIMUM CURRENT OR POLARIZATION CURRENT ADJUSTMENT

Turn slowly the minimum current trimming potentiometer clockwise (I_{min}) until an actuator movement can be visually detected. Turn slowly anticlockwise the potentiometer: the minimum current setting will be adjusted correctly when the actuator movement stops. For the REM model with minimum initial threshold current, set the reference signal to a Vref. of 150 mV.

MAXIMUM CURRENT GAIN ADJUSTMENT

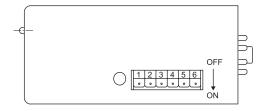
Turn first the ramp time trimming potentiometers clockwise by at least 10 turns, if the system could be damaged by a too fast solenoid operation (<u>evaluate the application carefully</u>). The maximum actuator speed can now be adjusted. Turn the reference signal to its maximum setting and rotate slowly the GAIN trimming potentiometer (GAIN) until the maximum required speed is obtained. The speed can now be varied by moving the potentiometer.

RAMP TIME ADJUSTMENT (RAMP-UP E RAMP-DOWN)

The ramp time is the time taken to pass from the minimum to the maximum current value, and vice versa. It's adjustable from a minimum of 0s up to a maximum of 20s (to reach the maximum current value setted). Turning clockwise the trimming potentiometer, the ramp time increases.

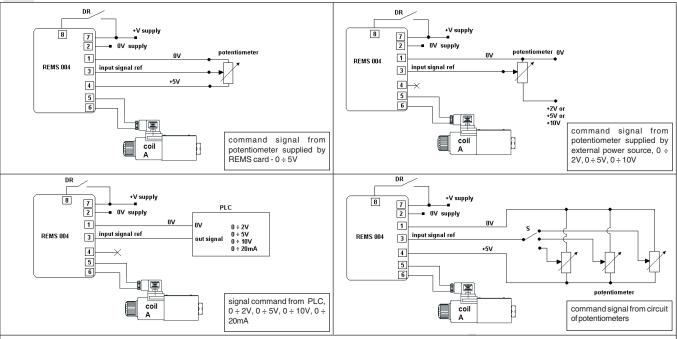
Notes:

- The ramp fall time affects the actuator stop position. Moving the reference to zero Volt, the actuator goes on moving till the setted ramp time is elapsed. Therefore it's necessary to adjust it properly.
- When the overload red LED lights up, it will be necessary to switch off the power to the card, switching it on again after having eliminated the cause of overload.


REM.S.RA... DIP SWITCHES TABLE

For our proportional valves are recommended the following settings:

			•
G G C C C G G G C	XD.3.A XDP.3.A XQ.3 XQP.3 CXQ.3 XD.3.A XDP.5.A XDP.3.A XQ.3	DITHER =100Hz DITHER =100Hz DITHER =100Hz DITHER =100Hz DITHER =100Hz DITHER =100Hz DITHER =100Hz DITHER =100Hz DITHER =100Hz	$\begin{split} I_{\text{max.}} &= 2.35 \text{Awith 9V coil} \\ I_{\text{max.}} &= 2.35 \text{Awith 9V coil} \\ I_{\text{max.}} &= 2.35 \text{A with 12V coil} \\ I_{\text{max.}} &= 1.76 \text{A with 12V coil} \\$
00000	XQP.3 XQP.5 XP.3 CXQ.3	DITHER =100Hz DITHER =100Hz DITHER =330Hz DITHER =100Hz	$\begin{split} I_{\text{max}} &= 1.76\text{A with } 12\text{V coil} \\ I_{\text{max}} &= 2.5\text{A with } 12\text{V coil} \\ I_{\text{max}} &= 1.25\text{A with } 12\text{V coil} \\ I_{\text{max}} &= 1.76\text{A with } 12\text{V coil} \end{split}$
GGGCCCCC	XD.3.A XDP.5.A XDP.3.A XQ.3 XQP.3 XQP.5 XP.3 CXQ.3	DITHER =100Hz DITHER =100Hz DITHER =100Hz DITHER =100Hz DITHER =100Hz DITHER =330Hz DITHER =100Hz	$\begin{array}{l} I_{\text{max}} = 0.88 \text{A} \text{ with 24V coil} \\ I_{\text{max}} = 1.25 \text{A} \text{ with 24V coil} \\ I_{\text{max}} = 0.88 \text{A} \text{ with 24V coil} \\ I_{\text{max}} = 0.88 \text{A} \text{ with 24V coil} \\ I_{\text{max}} = 0.88 \text{A} \text{ with 24V coil} \\ I_{\text{max}} = 1.25 \text{A} \text{ with 24V coil} \\ I_{\text{max}} = 0.68 \text{A} \text{ with 24V coil} \\ I_{\text{max}} = 0.88 $


Six miniature switches are mounted internally on one of the REM sides. The REM configuration to suit any particular application can be implemented by setting these switches.

PWM frequency (100 to 330 Hz), minimum (continuous or step) current, reference voltage range and maximum current (I_{max}) can thus be adjusted.

Function	DITHER		l n	nin	Input ref.			I.max.			
DIP sw	100 Hz	330 Hz	С	G	0÷10 V	0÷5 V	0÷2 V	0÷20 mA	2.8 A	1.76 A	0.88 A
1	OFF	ON									
2			OFF	ON							
3					OFF	ON	OFF	ON			
4					OFF	OFF	ON	OFF			
5									OFF	ON	OFF
6									OFF	OFF	ON

TYPICAL CONNECTIONS

- The connection between REM and the solenoid must be direct
- The common one of return to proportional solenoid must not be shared between other valve connections or electrical equipment worker.

POT = $1000 \div 5000 \Omega$

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product. The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Aron spa - Via Natta, 1 - 42124 Reggio Emilia (Italy) - Tel. +39 0522 5058 - Fax +39 0522 505856 - www.aron.it - sales@brevinifluidpower.com

R	E	N	١.	D	ιF	RA	١

CALIBRATION PROCEDURE	Ch. IX page 8
OVERALL DIMENSIONS	CH. IX PAGE 10
MOUNTING BASES	Ch. IX page 10

ORDERING CODE

REM

Miniaturized electronic regulator in Undecal type container

Double solenoid

Asymmetrical ramp

Maximum output current I _{MAX.} (JU variant) **X** = 0.88 Å (0.80 Å)

Y = 1.76 A (1.20 A)

Z = 2.8 A

Input reference (V) see note (*) below

 $2 = -2 \div +2 \text{ V}$

 $5 = -5 \div +5 \text{ V}$

0 ÷ +5 V

 $0 = -10 \div +10 \text{ V}$

 $\mathbf{A} = -20\text{mA} \div +20\text{mA}$ $0 \div +20\text{mA}$

0 -

Frequency Dither

1 = 100 Hz (standard, JU var.)

2 = 330 Hz

Minimum initial current can only be adjusted in steps

4

00 = No variant

DJ = Duble setpoint gain

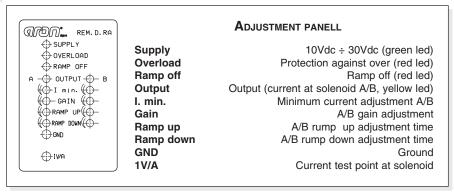
JU = for MHPF and MSPF modules (proportional valves HPV)

Serial No.

(*) If the input reference is a current signal (mA) the regulator has to be pre-setted in the factory.

- registered mark for industrial environment with reference to the electromagnetic compatibility. European norms: EN61000-6-2 general safety norm industrial environment
- EN61000-6-4 emission general norm residential environment
- Product in accordance with RoHS 2002/95/ CE Europe Directive.

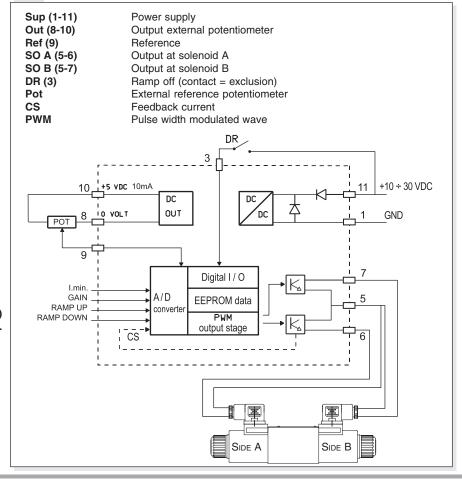
REM.D.RA... TYPE ELECTRONIC REGULATORS DOUBLE SOLENOID PROPORTIONAL CONTROL VALVES


The electronic control card type REM.D.RA has been designed to drive the ARON double solenoid proportional valves series "XD.*.C...and XDP.3.C" without integral position transducer. The control card is enclosed in an "UNDECAL" type housing, a typical relay mounting standard. The output stage operates on the pulse width modulation principle (P.W.M.) and is provided with current feedback in order to obtain a solenoid output current proportional to the reference input signal.

Output short circuit and supply polarity inversion protection is provided. Gain, minimum current and rise and fall ramp time adjustments are possible through the corresponding front panel trimming potentiometers, while the output current to the solenoid can be measured via the Valve Current test points, and the ramps can be excluded.

The product incorporates a serial interface for adjustment of parameters.

Pay attention please: electronic regulators must be used in dampness and water protected places.


The technical data and user manuals of DJ and JU variant are available by section "Products" on Internet site www.aron.it.

If any field is missing from the ordering code the standard setting is as follows:

- Input ref. = -5 \div +5V
- Dither = 100Hz
- $-I_{\text{max.}} = 0.8A$

ELECTRICAL CIRCUIT AND CONNECTIONS

Power supply Maximum supply voltage	10 ÷ 30 VDC 36 V
Power absorption	40 W
Current output setting by dip switches	Imax = 2.8A
	lmax = 1.76A
	Imax = 0.88A
External potentiometer supply output (pin n° 10)	
short circuit protected	+5V I.max.10mA
Signal input reference (pin n° 9) setting by dip switches	-2V ÷ +2V
	-5V ÷ +5V
	-10V ÷ +10V
	-20A ÷ +20mA (*)
Signal input reference (pin n° 9) setting by dip switches	0V ÷ +5V
	0 ÷ +20mA (*)
(*) Note: for the current signal (mA) the regulator	
has to be pre-setted in the factory.	
Polarization current adjustment	Imin = 0 ÷ 50% Imax
Current gain adjustment	50% ÷ 100% lmax
Ramp time adjustment	0 ÷ 20 sec
· · · · · · · · · · · · · · · · · · ·	
Ambient operating temperature	-20 ÷ +70°C
Current test point	1 Volt = 1 Ampere
Weight	Kg 0,120

REM.D.RA... Instructions for use

CALIBRATION PROCEDURE

Connect the card in the proper way following the next page "Typical connections" but without powering it. Turn completely anticlockwise (20 turns about) the trimming potentiometers of Minimu Current (I_{\min}) and Ramp Time (Ramp-up and Ramp-down), and position the reference potentiometer on zero. Before powering the card, ensure that any unforeseen hydraulic system movement cannot cause material damage or injury to people. Power now the card; the green LED should light up

Two channel minimum current (I MIN) Adjustment (DEAD BAND)

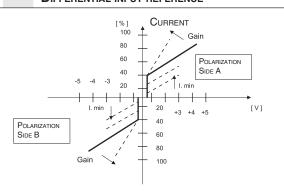
Set the reference signal of approx. Vref +150mV. Than turn clockwise the trimmer until an actuator movement can be visually detected (A channel Output LED lights up). Than turn the same trimmer anticlockwise until the movement stops. Repeat the $I_{\rm min}$ calibration for the other channel B.Set the reference signal of approx. Vref -150mV (B channel Output LED lights up).

GAIN ADJUSTMENT

Turn first the ramp time trimming potentiometers (RAMP UP) clockwise by at least 10 turns, if the system could be damaged by a too fast solenoid operation (evaluate the application carefully). The maximum actuator speed can now be adjusted. Turn the reference signal to the maximum positive setting value and rotate slowly the gain trimming potentiometer (GAIN) until the maximum required speed is obtained. The speed can now be varied by moving the potentiometer lever. Repeat the above operations for the other channel after turning the reference signal to the maximum negatif value.

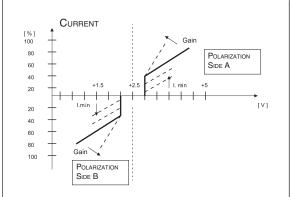
RAMP TIME ADJUSTMENT

The ramp time is the time taken to pass from the minimum to the maximum current value, and vice versa. It's adjustable from a minimum of 0s up to a maximum of 20s (to reach the maximum current value setted) separately for channel A and B. Turning clockwise the trimming potentiometer, the ramp time increases.


Notes

- 1) The ramp fall time affects the actuator stop position. Moving the reference potentiometer to zero Volt, the actuator goes on moving till the setted ramp time is elapsed. Therefore it's necessary to adjust it properly.
- When the overload red LED lights up, it will be necessary to switch off the power to the card, switching it on again after having eliminated the cause of overload.

SIGNALS INPUT REFERENCE


The REMD can recive two kinds of command signal inputs, differential input (non inverting, inverting voltage $-5V \div +5V$), or positive voltage $(0V \div +5V)$.

DIFFERENTIAL INPUT REFERENCE

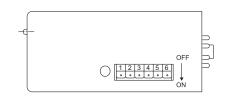
For being able to command a proportional valve double solenoid with a differential input command voltage in income at contact 9 of REMD is necessary not to connect the contact 10 of REMD.

POSITIVE INPUT REFERENCE

For being able to command a proportional valve double solenoid with a positive command voltage in income at contact 9 of REMD is necessary to connect the contact 10 of REMD a resistive load:

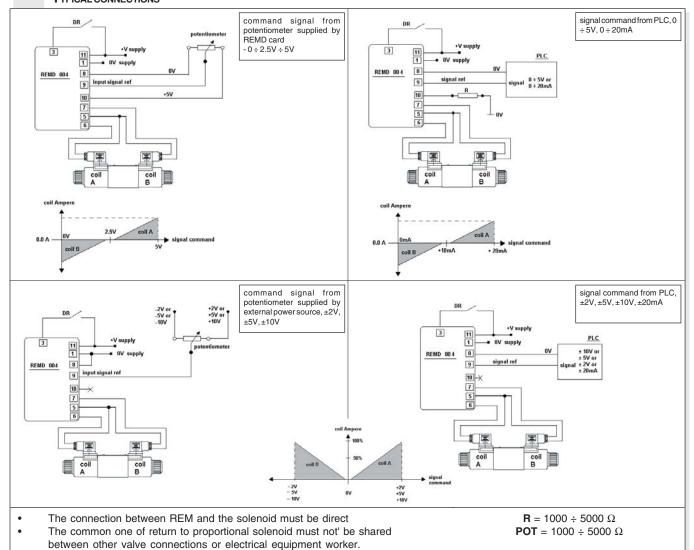
- potentiometer (minimum 1000, max 5000 Ohm) [with external potentiometer command signal, pin n° 9]
- resistor (minimum 1000, max 5000 Ohm) [with external reference value generator, e.g. by a PLC , pin n° 9].

ELECTRONIC REGULATORS DOUBLE SOLENOID PROPORTIONAL CONTROL VALVES


REM.D.RA... DIP SWITCHE TABLE

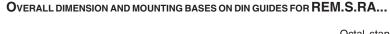
Six miniature switches are mounted internally on one of the REM sides. The REM configuration to suit any particular application can be implemented by setting these switches. PWM frequency (100 to 330 Hz), reference voltage range and maximum current (I_{max}) can thus be adjusted.

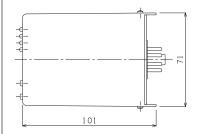
For our proportional valves are recommended the following settings:

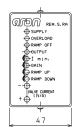

G	XD.3.C	DITHER =100Hz	$I_{\text{max.}} = 2.35A \text{ with 9V coils}$
G	XDP.3.C	DITHER =100Hz	$I_{\text{max.}} = 2.35A \text{ with 9V coils}$
G	XD.3.C	DITHER =100Hz	$I_{\text{max.}} = 1.76A \text{ with } 12V \text{ coils}$
G	XDP.5.C	DITHER =100Hz	$I_{\text{max.}} = 2.5A$ with 12V coils
G	XDP.3.C	DITHER =100Hz	$I_{\text{max.}} = 1.76A \text{ with } 12V \text{ coils}$
G	XD.3.C	DITHER =100Hz	$I_{max} = 0.88A$ with 24V coils
G	XDP.5.C	DITHER =100Hz	$I_{\text{max.}}^{\text{max.}} = 1.25A \text{ with 24V coils}$
G	XDP.3.C	DITHER =100Hz	$I_{\text{max.}} = 0.88A$ with 24V coils

For the version with reference signal in current it needs to be preset in-factory.

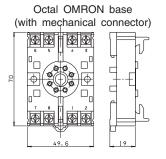
Function	DITI	HER	l min	I min Input ref. I.max			Input ref.					
DIP sw	100 Hz	330 Hz	G	-10÷10 V	-5÷5 V		-20mA ÷20mA	0÷5 V	0 ÷20mA	2.8 A	1.76 A	0.88 A
1	OFF	ON										
2			ON									
3				OFF	ON	OFF	ON	ON	ON			
4				OFF	OFF	ON	OFF	OFF	OFF			
5										OFF	ON	OFF
6										OFF	OFF	ON


TYPICAL CONNECTIONS

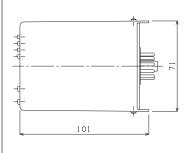


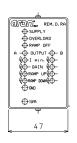

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product. The user must in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

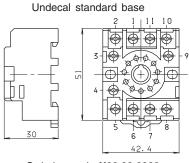
Aron spa - Via Natta, 1 - 42124 Reggio Emilia (Italy) - Tel. +39 0522 5058 - Fax +39 0522 505856 - www.aron.it - sales@brevinifluidpower.com



Octal standard base 44

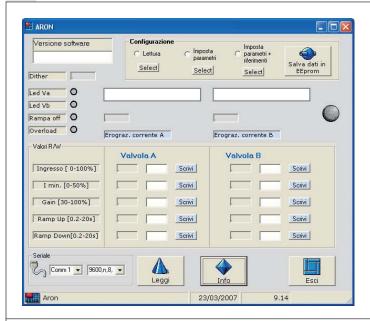

Ordering code X30.80.0000




Ordering code X30.80.0004

Undecal OMRON base

OVERALL DIMENSION AND MOUNTING BASES ON DIN GUIDES FOR REM.D.RA...



(with mechanical connector)

Ordering code X30.90.0000

Ordering code X30.90.0004

ARONDG SOFTWARE

AronDG program for the digital adjustment of the parameters of the REMS and REMD boards.

AronDG program for the digital adjustment of the parameters of the REMS and REMD boards.

The program is used to store (the settings are cancelled when the REM board is switched off) the following parameters:

- Minimum current
- · Upward current ramp
- Upward current ramp
- · Downward current ramp

Italian/English version: purchase order code P35150003.

NB: the AronDG software can be used with all the REMS and REMD boards that have a TTL connector (production commencement year 2008).

SERIAL CABLE RS232/TTL

Ordering code VE0110001

REM connecting at computer with serial cable.

SE	2	Λ	N21	

Instructions	Ch. IX page 12
OVERALL DIMENSIONS	Ch. IX page 12

Electronic card format

EUROCARD DIN 41612

Open loop for proportional

control valves type

XD3.. and XDP3...

without transducer

al solenoide: 1.76 A

Corrente max.

No variant

Serial No.

ORDERING CODE

NG₀₆

Analogic

SE

3

AN21

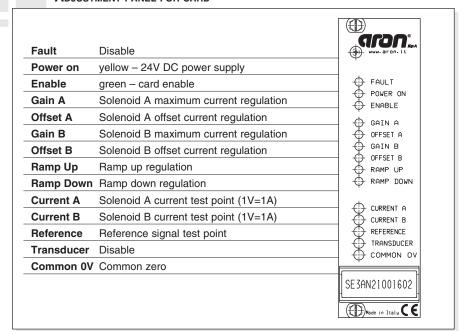
00

16

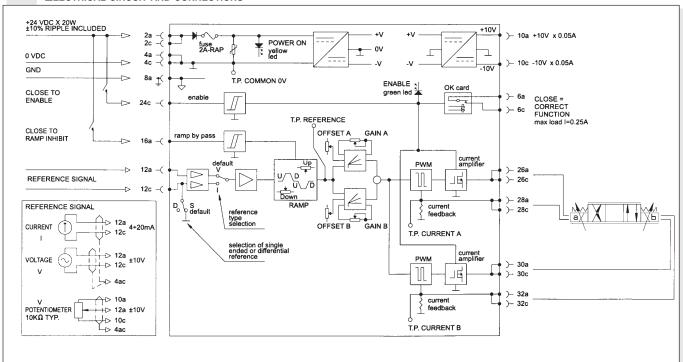
0

2

SE.3.AN21.00... ELECTRONIC CARDS FORMAT EUROCARD FOR PROPORTIONAL VALVES CONTROL CETOP 3


The electronic cards type SE.3.AN.21.00... have been planned for controlling double solenoid proportional valves of the series XD.3...XDP.3...which do not incorporate the position transducer. The card has a EUROCARD format for being assembled on a connector - type DIN 41612 D 32. The output stage operates on the basis of the Pulse Width Modulation and is subject to the current feedback so that it is possible to obtain an output solenoid current directly proportional to the input signal. The regulator is supplied with standard calibration for proportional valve control. In any case it is possible to optimize the regulations by operating on the relative trimmers placed on the frontal panel (see picture).

• The connection between the card and the solenoid must be direct • The common one of return to proportional solenoid must not be shared between other valve connections or electrical equipment worker.


Registered mark with reference to the electromagnetic compatibility.

European norms: EN50082-1 - General safety norm; EN50081-1 - Emission general norm.

ADJUSTMENT PANEL FOR CARD

ELECTRICAL CIRCUIT AND CONNECTIONS

Instructions for use

For proportional valves with code

XD.3.A.**.*.*.F.**.2 - XD.3.C.**.*.*.F.**.2 XDP.3.A.**.*.*.F.**.2 - XDP.3.C.**.*.*.F.**.2

Power electric supply

24 VDC nominal

22÷30 VDC rectified and stabilized (30W max.)

2A fast-acting fuse is fitted for power circuit protection.

Reference voltage

The card gives 1 stabilized voltage values: +10V 50mA (a10) e -10V 50mA (c10).

Available inputs

± 10V (a12, c12) preseted $4 \div 20mA$ (a12, c12) SW 1 bank:

select I for current reference signal.

Card enable (Enable)

Usually the card is not enable. For enabling it, apply in c24 a voltage between 22 and 30VDC. Green led signal.

Ramp exclusion

Ramps are usually on. In order to disable them apply a16 a voltage between 22 ÷ 30VDC.

Calibration procedure

Connect the card according to the scheme (See the preceding page). Set zero the reference potentiometer. Before applying the voltage, make sure that the hydraulic system does not move suddenly causing damages to people or things. Apply the voltage to the card: the green led will start blinking. Enable the card and disconnect the ramps (led "FAULT" off) and disable the ramps.

Minimum current regulation

A channel: put the reference signal on 3÷5% of the max. value. Turn the minimum current trimmer clockwise (I_{\min} A) until the actuator moves; then turn the trimmer counterclockwise until the actuator stops.

B channel: repeat the above procedure for the A channel by operating on the I_{min} B trimmer for negative values of the reference signal.

Maximum current regulation

A channel: put the reference signal on the max. (positive) value and turn the gain trimmer (I_{\max} A) slowly, until the max. speed requested is reached. Now the speed can be varied by changing the reference

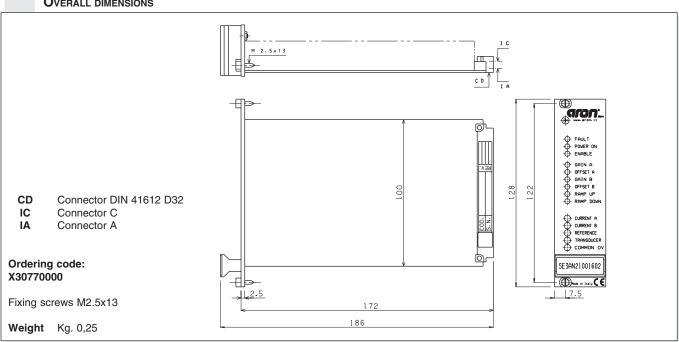
B channel: repeat the above procedure for the A channel by operating on the $I_{\rm max}$ B trimmer and by putting the reference signal on the max. negative value.

Ramp time calibration

Connect the ramps. The ramp time is the time which is necessary for going from the minimum current value to the max. current value and vice versa. The time can be set from a minimum value of 0.1 sec. (ramp excluded) up to a maximum value of 10 sec. (valve max. opening) whether downwards or upwards. By turning the trimmers clockwise the ramp time increases

Notes:

The ramp down time influences the lock position of the actuator. By setting to zero the reference signal, the actuator keeps moving until the ramp time set (in a downward direction) has passed. For this reason it is necessary to carry out the adjustment carefully and properly.


Solenoid current test point

On the frontal card panel: 1V = 1A

Command signal test point

Enables reading in voltage of referencesignal sent to the card. Reading is direct, but of opposite sign, with voltage reference while current conversation is: 4mA = +10V, 20mA = -10V.

OVERALL DIMENSIONS

GOON. C. C. S. C. S.

SE.3.AN21.RS...03

Electronic card format EUROCARD DIN 41612

Closed loop valves with positional transducer type XDC.3 serie 2

Max. current at solenoid: 1.76 A

No variant

Serial No.

Instructions	Ch. IX page 14
OVERALL DIMENSIONS	Cu IX page 14

ORDERING CODE

NG₀₆

Analogic

SE

3

AN21

RS

16

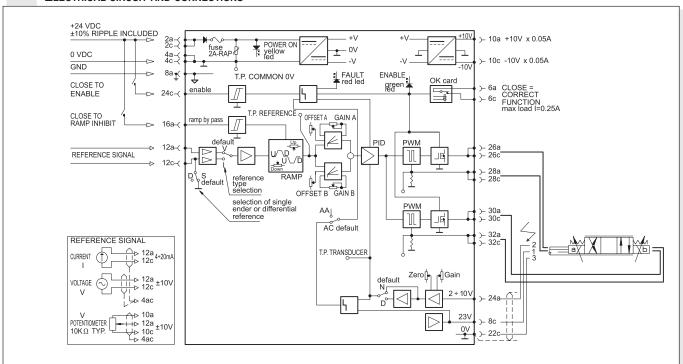
0

3

SE.3.AN21.RS... ELECTRONIC CARDS FORMAT EUROCARD FOR POSITIONAL TRANSDUCER VALVES CONTROL

The electronic cards type SE.3.AN.21.RS...serie 3 have been planned for controlling single and double solenoid proportional valves XDC3....serie 2 equipped with position transducer type LVDT. The card has a EUROCARD format for being assembled on a connector type DIN 41612 D 32. The output stage operates on the basis of the Pulse Width Modulation (PWM) and is subject to the current feedback so that it is possible to obtain an output solenoid current directly proportional to the input signal. The regulator is supplied with standard calibration for proportional valve control. The card is equipped with a control module type PI which compares the reference signal with the position transducer signal: the eventual error is used to optimize the regulation. It is possible to carry out further regulations by operating on the relative trimmers placed on the frontal panel (see picture).

• The connection between the card and the solenoid must be direct • The common one of return to proportional solenoid must not be shared between other valve connections or electrical equipment worker.


Registered mark with reference to the electromagnetic compatibility.

European norms: EN50082-1 - General safety norm; EN50081-1 - Emission general norm.

ADJUSTMENT PANEL FOR CARD

Fault	red – transducer fault signal	_ Taron°
Power on	yellow – 24V DC power supply	www.aron.it
Enable	green – card enable	.
Gain A	Solenoid A maximum current regulation	FAULT POWER ON
Offset A	Solenoid A offset current regulation	ENABLE
Gain B	Solenoid B maximum current regulation	GAIN A
Offset B	Solenoid B offset current regulation	OFFSET A
Ramp Up	Ramp up regulation	GAIN B OFFSET B
Ramp Down	Ramp down regulation	RAMP UP
Current A	Solenoid A current test point (1V=1A)	RAMP DOWN
Current B	Solenoid B current test point (1V=1A)	CURRENT A
Reference	Reference signal test point	CURRENT B
Transducer	Transudcer signal measurement point	REFERENCE TRANSDUCER
Common 0V	Common zero	COMMON OV
		SE3AN21RS1603
		Made in Italy C

ELECTRICAL CIRCUIT AND CONNECTIONS

Instructions for use

For proportional valves with code XDC.3.C..F.... serie 2 (SE.3.AN21.RS.16...serie 3)

Power electric supply

24 VDC nominal

22÷30 VDC rectified and stabilized (30W max.)

2A fast-acting fuse is fitted for power circuit protection.

Reference voltage

The card gives 2 stabilized voltage values: +10V 50mA (a10) and -10V 50mA (c10).

Available inputs

± 10V (a12, c12) preseted 4 ÷ 20mA (a12, c12) SW 1 bank:

select I for current reference signal.

Card enable (Enable)

Usually the card is not enable. For enabling it, apply in c24 a voltage between 22 and 30VDC. Green led signal.

Ramp exclusion

Ramps are usually on. In order to disable them apply $a16\,$ a voltage between 22 \div 30VDC.

Calibration procedure

Connect the card according to the scheme (See the preceding page). Set zero the reference potentiometer. <u>Before applying the voltage, make sure that the hydraulic system does not move suddenly causing damages to people or things.</u> Apply the voltage to the card: the green led will start blinking. Enable the card and disconnect the ramps (led "FAULT" off) and disable the ramps.

Minimum current regulation

<u>A channel</u>: put the reference signal on $3\div5\%$ of the max. value. Turn the minimum current trimmer clockwise (I_{min} A) until the actuator moves; then turn the trimmer counterclockwise until the actuator stops.

 \underline{B} channel: repeat the above procedure for the A channel by operating on the I_{min} B trimmer for negative values of the reference signal.

Maximum current regulation

<u>A channel</u>: put the reference signal on the max. (positive) value and turn the gain trimmer (I_{max} A) slowly, until the max. speed requested is reached. Now the speed can be varied by changing the reference signal.

<u>B channel</u>: repeat the above procedure for the A channel by operating on the I_{max} B trimmer and by putting the reference signal on the max. negative value.

Ramp time calibration

Connect the ramps. The ramp time is the time which is necessary for going from the minimum current value to the max. current value and vice versa. The time can be set from a minimum value of 0.1 sec. (ramp excluded) up to a maximum value of 10 sec. (valve max. opening) whether downwards or upwards. By turning the trimmers clockwise the ramp time increases.

Notes:

The ramp down time influences the lock position of the actuator. By setting to zero the reference signal, the actuator keeps moving until the ramp time set (in a downward direction) has passed. For this reason it is necessary to carry out the adjustment carefully and properly.

The card block (FAULT) is automatically reset after that the error has been eliminated.

LVDT connection

See the preceding page:

- terminal 1 della LVDT c8 of the card
- terminal 2 della LVDT a24 of the card
- terminal 3 della LVDT c22 of the card

Use screened cable with earth braid.

Solenoid current test point

On the frontal card panel: 1V = 1A

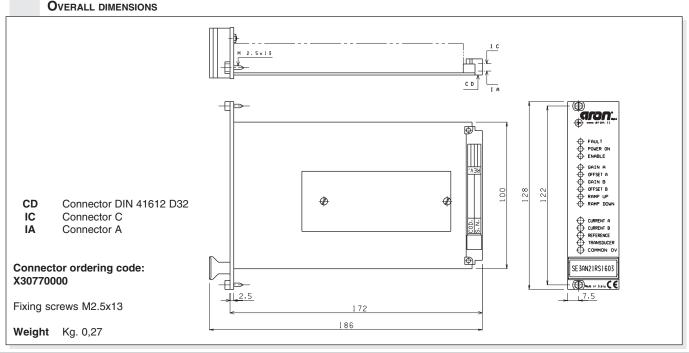
Command signal test point

Enables reading in voltage of referencesignal sent to the card. Reading is direct, but of opposite sign, with voltage reference while current conversation is: 4mA = +10V, 20mA = -10V.

Feedback signal test point

On the frontal card panel: ± 5V according to the spool position

Ambient temperature range


0°÷ 50°C

Electric connections

The connections concerning the reference potentiometers must be carried out with a wire having a section of $\geq 0.75 \text{mm}^2$.

It is advised to use a screened cable with earth braid.

OVERALL BIMENOLONG

SE3.LN3						
CARD ADJUSTMENT	CH. IX PAGE 16					
Instructions	CH. IX PAGE 17					
FURTHER INFORMATIONS	CH. IX PAGE 18					

PATENT PENDING n° MO2003A000296

ORDERING CODE

SE3

Electronic card Aluminium box (IP67)

LN3

For levelling system with acceleration control

312 = Supply voltage 12VDC

324 = Supply voltage 24VDC

**

16 = 1.76A Maximum current (coil 12V)

08 = 0.88A Maximum current (coil 24V)

Variants:

0 = No variants

Serial No

SE3.LN3 "CATEGORY 3" SAFETY ELECTRONIC CARD (EN9541) OF MOBILE AERIAL PLATFORMS

The category 3 safety electronic card was planned to permit automatic adjustment of the "boats" of mobile aerial platforms. Maintenance of the horizontal position is guaranteed independently from the geometrical configuration of the platform's articulated arms and of the variation of inclination of the machine with respect to the base plane, complying to the normative in force of the control systems bound to EN 954-1 safety.

The card is equipped with:

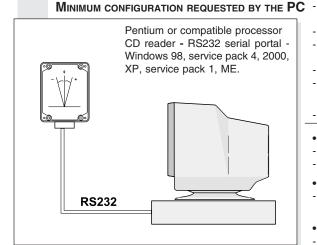
- two separate outlets (contact 13 and 14) live, 12 or 24V max. 1 Amp for the indication of exceeding the inclination threshold pre-alarm (the value can be set by the installer between 0 and 10°).
- One power outlet (contact 3) managed by safety relays for movement blocking in the case of fault of the levelling system or for exceeding the maximum allowed inclination (intervention at 10°, the value can not be modified).
- Two digital inlets (optional) configurable for the use of the card in particular applications. All adjustments and calibrations come about using a RS232 serial interface and relevant software supplied with the product.

Supply voltage Max. supply voltage (peak)	10 ÷ 36VDC 40V
Maximum current supplied on the PWM outlets PWM frequency Dither frequency	3 Amps 4000 Hz 110 Hz
Offset adjustment field on the vertical	$-6^{\circ} \div +6^{\circ}$ resolution 0.1°
Dead band	$0 \div \pm 3^{\circ}$ resolution 0.1°
Minimum current adjustment	0 ÷ 50% Imax.
Current gain adjustment	0 ÷ 100% Imax.
Adjustment intervention signal for exceeding pre-alarm inclination	0 ÷ ± 10° resolution 0.1°
Intervention of safety relay for max inclination	10 °
Serial standard communication optional communicationCAN	RS232 2.0B
Amp-seal connection	14 contacts wire section = 1.0mm2
Container protection level	IP67
Ambient operating temperature	-30° ÷ +85°C
Weight	Kg 0,721

(registered mark with reference to the EU Community Directives, in accordance with the following norms:

- EN 954-1 Safety-related parts of control systems Part 1: General principles for design.
- EN61000-6-2 Generic immunity standard, industrial environment.
- EN61000-6-3 Generic emission standard, residential environment.
- EN 60255-21-1 / EN 60255-21-2 Electrical relays Vibration, shock, bump and seismic tests.
- EN61000-4-2 EN61000-4-2/A1 Electrostatic discharge immunity test.
- EN61000-4-3 EN61000-4-3/A1 EN61000-4-3/A2 Radiated, radio frequency, electromagnetic field immunity test.
- EN61000-4-4 Electrical fast transient/burst immunity test.
- EN61000-4-6/A1 Conducted disturbances inducted by radio-frequency fields, immunity test.
- ISO7637-2 Electrical disturbances by conduction and coupling.

• Material supplied with the card


- Connector AMPSEAL flying part, with 14 contacts
- Handbook of use with instructions of maintenance and assembly.

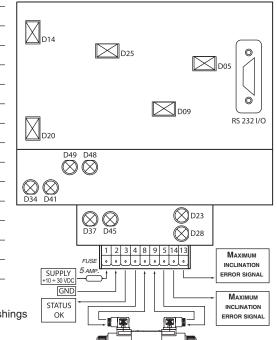
Separately supplied material

 The software P35150004 for the programming of the card is supplied on Cdrom support only upon request (please contact our Sale Offices).

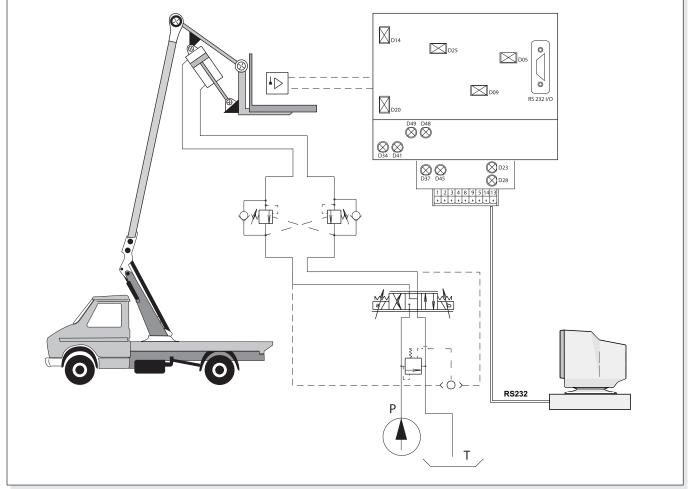
Material not supplied

- RS232 cable is not supplied.

"CATEGORY 3" SAFETY ELECTRONIC CARD (EN9541) OF MOBILE AERIAL PLATFORMS



CARD ADJUSTMENT


Led / colour	Function
D5 / green	Led on = μP (microprocessor) OK
D9 / green	Led on = DSP (Digital Signal Processor) OK
D14 / green	Led on = Power supply stage 8V, OK
D20 / green	Led on = Power supply stage 3.3V, OK
D25 / green	Led on = Power supply stage 5V, OK
D23 / red	Led on = Alarm for Side A exceeding maximum inclination
D28 / red	Led on = Alarm for Side B exceeding maximum inclination
D34 / red	Led on = security relay 1, active card functioning (OK)
D37 / red	Led on = PWM outlet side A active
D41 / red	Led on = security relay 2, active card functioning (OK)
D45 / red	Led on = outlet PWM side B active
D48 / red	Led on = Digital inlet 1 enabled
D49 / red	Led on = Digital inlet 2 enabled

Other faults or malfunctioning are signalled by the flashing of LEDS D5 and D9. Flashing occurs at pre-established time intervals A series of consecutive flashings corresponds to a specific error that identifies an fault. LED D5 signals the faults detected by the mP (microprocessor).

LED D9 signals faults detected by the DSP (digital signal processor).

MOUNTING SCHEME

"CATEGORY 3" SAFETY ELECTRONIC CARD (EN9541) OF MOBILE AERIAL PLATFORMS

Instructions

- Before proceeding to the calibration, ensure that any unexpected movement of the hydraulic system cannot cause material damage or injury to people.
- The correct work of the card is guaranteed inserting an external fuse 32V- 5Amp on the supply voltage line.
- The connection between the card and the solenoid must be direct.
- The common one of return to proportional solenoid must not be shared between other valve connections or electrical equipment worker

• SUPPLY VOLTAGE SETTING

The supply voltage can be 12 VDC or 24 VDC. Always check that the working voltage of the reels of the proportional valve is not higher than the general power supply voltage of the plant.

OFFSET VERTICAL POSITION ADJUSTMENT

After having installed the card on the platform cage, it is possible to regulate the reference vertical through the "OFFSET" regulation. The value can be varied around a range \pm 6°.

DEAD BAND ADJUSTMENT

It corresponds to a value between \pm 3° with respect to the position of the vertical where the card results to be indifferent to the corrections. The value can be set using the "DEAD BAND" control.

• MINIMUM CURRENT ADJUSTMENT

Minimum current allows to eliminate opening start delay of the valve caused by the mechanical covering of the cursor. The value of separate minimum current for channel A and B is pre-calibrated in the factory, it can be adjusted using the "I min. A" and "I min. B" control.

• CURRENT GAIN ADJUSTMENT

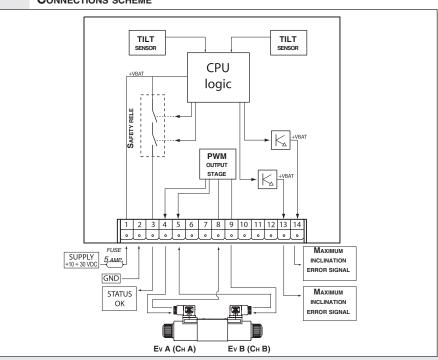
Current gain allows to increase the opening section of the functioning valve of the greatest inclination of the "boat". Separate current gain for the A and B channel is precalibrated in the factory, it can be adjusted using the "Gain A" and "Gain B" control.

ALARM INTERVENTIONS' ADJUSTMENT FOR EXCEEDING PRE-ALARM INCLINATION

The card has two separate live outlets (12/24V, max. 1 Amp) to signal exceeding of a pre-set inclination value of the boat.

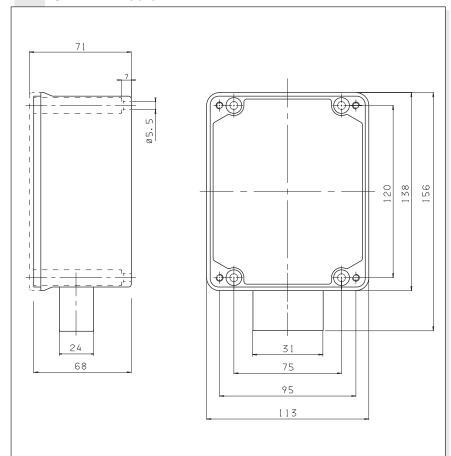
This value (between 0° and 10°) can be set by the system installer separately for both channels using the "ALARM A" and "ALARM B" control.

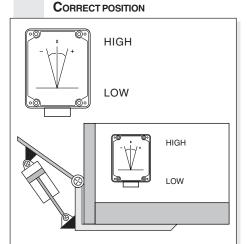
The two live outlets are active (voltage value on the outlets = 12/24V) when the boat is at an inclination lower than the values indicated in "ALARM A" and "ALARM B".

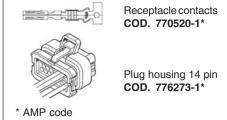

When inclination exceeds the indicated values the live outlets are disabled (voltage value on the outlets = 0V).

• CALIBRATION PROCEDURE

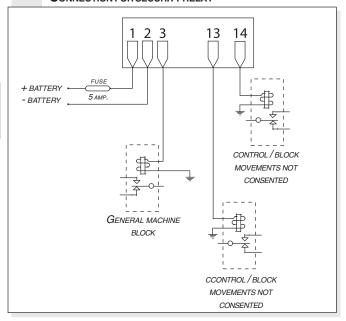
All calibration parameters are set using the PC. It is necessary to connect the levelling board to a PC using a serial connection. Refer to the instructions contained in the attached maintenance and installation manual for the procedure.

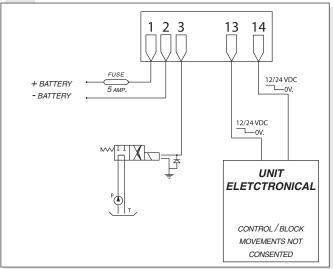

N° pin	Function	Description
1	Power supply	+Vbattery 10 ÷ 30 VDC
2	GND supply	-Vbattery GND
3	Status OK - Vbat output relè	Live outlet
(1:	at in intermediate for acceptable as accept	V of battery - max. 6Amps
,	1 0	inclination ±10° or for breakage of the card)
4	Out PWM coil A +	Outlet PWM
		solenoid's side A max. 3Amps
5	Out PWM coil B +	Outlet PWM
		solenoid's side B max. 3Amps
6	RX/232	RS232 serial portal reception channel
		Optional CAN/L for Can-bus communication
7	TX/232	RS232 serial portal reception channel
	(Optional CAN/H for Can-bus communication
8	Common PWM coil A	Common channel PWM A
9	Common PWM coil B	Common channel PWM B
10	12/24V - Digital input 1 – opt	9
		(function optional)
11	12/24V - Digital input 2 – opt	
		(function optional)
12	GND RS232 C	ommon serial portal Communication RS232
13	Digital output - 12/24V max.	1Amp Pre-alarm outlet
		for exceeding threshold
	max. inclination positive (interv	vention angle programmable from 0 to +10°)
14	Digital output - 12/24V max.	•
		for exceeding threshold
	max. inclination negative (inter	vention angle programmable from 0 to -10°)


CONNECTIONS SCHEME


"CATEGORY 3" SAFETY ELECTRONIC CARD (EN9541) OF MOBILE AERIAL PLATFORMS

OVERALL DIMENSIONS





Spare parts kit, connectors and electrical contacts: V89950000

CONNECTION FOR SECURITY RELAY

CONNECTION FOR SECURITY SOLENOID VALVE

- · Before proceeding to the calibration, ensure that any unexpected movement of the hydraulic system cannot cause material damage or injury to people.
- · The correct work of the card is guaranteed inserting an external fuse 32V- 5Amp on the supply voltage line.

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and the manufacturer reserves the right to make construction of the product presented in this catalogue may be subject to variation, and the manufacturer reserves the right to make construction of the product presented in this catalogue may be subject to variation, and the manufacturer reserves the right to make construction of the product presented in this catalogue may be subject to variation, and the manufacturer reserves the right to make construction of the product presented in the presenchecked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product. The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Aron spa - Via Natta, 1 - 42124 Reggio Emilia (Italy) - Tel. +39 0522 5058 - Fax +39 0522 505856 - www.aron.it - sales@brevinifluidpower.com

SE.MNC... Not somultaneous

MOVEMENT ELECTRONIC CARD

The SE.MNC... electronic control card is fitted with one or two proportional outputs with current feedback for valve control (XQP3, CXQ3) and numerous on/off outputs for controlling the solenoid in directional valves.

The overall functional logic enables simultaneous control of a single proportional output, one of the 5 on/off directional valves and a dump valve within the hydraulic circuit.

The electronic card is fitted with an electric safety control (operator present signal); the current outputs are only enabled if the operator present signal is on. The card is compatible with the JC.5 series joystick.

SE.MNC					
INSTRUCTIONS FOR USE	Ch. IX Page 19				
ELECTRICAL FEATURES	Ch. IX Page 20				
REFERENCE INPUT SIGNAL	Ch. IX Page 20				
ELECTRICAL CONNECTIONS	Ch. IX Page 20				
TYPICAL CONNECTIONS	Ch. IX Page 21				
OVERALL DIMENSIONS	Ch. IX Page 21				
TYPICAL INSTALLATION	Ch. IX Page 22				

CALIBRATION PROCEDURE

POWER SUPPLY AND WIRING

The card power supply can be protected by means of a 15A fuse. 0.75mm² or 1mm² gauge electrical wire should be used for the connections.

PROPORTIONAL OUTPUT ADJUSTMENT

The standard version card is fitted with an adjustment trimmer, which can be accessed by removing the top of the casing. Each PWM output is fitted with trimmers for minimum current adjustment (Imin), current gain and ramp up/down.

MINIMUM CURRENT ADJUSTMENT

Minimum current helps overcome valve overlap and increases the sensitivity of the joystick on the proportional valve opening. Minimum current value can be adjusted to between 0% and 50% of the maximum current. To increase the minimum current value, turn the Imin trimmer in a clockwise direction.

CURRENT GAIN ADJUSTMENT

Current gain allows the actuator's maximum speed to be adjusted according to the maximum value of the analogue signal (10v). Current gain can be adjusted to between 50% and 100% of the maximum current. To reduce the gain value, turn the min trimmer in an anticlockwise direction.

RAMP TIME ADJUSTMENT

The ramp time is the time taken to pass from the minimum to the maximum current value, and vice versa. It's adjustable from a minimum of 0s up to a maximum of 20s. To increase the ramp time, turn the trimmer in a clockwise direction.

ORDERING CODE

SE

Electronic card

MNC

For not simultaneous moviment

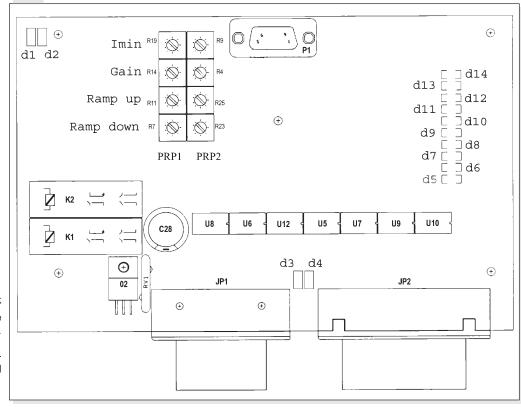
Alluminium box case IP67

Valve adjiustment 12F = 12V - 1.76A

24G = 24V - 0.88A

Proportional flow regulators

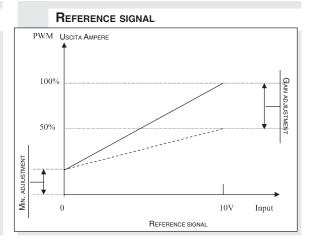
1 = one regulator2 = two regulators



1

No variant

Serial No.



registered mark with reference to the electromagnetic compatibility. European norms:

- UNI EN ISO 14982 -Agricultural and Forestal Machines

9

ELECTRICAL FEATURES Power supply voltage 9 ÷ 30VDC Max current absorbed 15A Analogue inputs n°2 0 ÷ 10V n°10 Digital inputs 12V or 24V optoisolated Proportional outputs n°2 Max 2,5A with current feedback n°11 On/off outputs Max 3A Auxiliary voltage output n°2 10V stabilized Proportional outputs parameter adjustment Standard version by trimmer On request by RS-232 Electrical connections Connector 23pin + Connector 14pin Protection according to DIN

(LED) STATUS SIGNAL

Operating temperature

LED STATUS	Function	Pin
D1 Led on	card supplied	
D2 Led on	card supplied	
D3 Led on	Proportional output PROP EV1 active	Pin n°4 connector AMP 14 way
D4 Led on	Proportional output PROP EV2	Not used
D5 Led on	Output IN0 active (forward/canal B)	Pin n°10 connector AMP 23 way
D6 Led on	Output IN1 active (back/canal A)	Pin n°11 connector AMP 23 way
D7 Led on	Output IN2 active (Not used)	Pin n°12 connector AMP 23 way
D8 Led on	Output IN3 active (Not used)	Pin n°13 connector AMP 23 way
D9 Led on	Output IN4 active (switch 1_JC5)	Pin n°14 connector AMP 23 way
D10 Led on	Output IN5 active (switch 2_JC5)	Pin n°15 connector AMP 23 way
D11 Led on	Output IN6 active (switch 3_JC5)	Pin n°20 connector AMP 23 way
D12 Led on	Output IN7 active (switch 4_JC5)	Pin n°21 connector AMP 23 way
D13 Led on	Output IN8 active (switch 5_JC5)	Pin n°22 connector AMP 23 way
D14 Led on	Output IN9 active (operator present)	Pin n°23 connector AMP 23 way

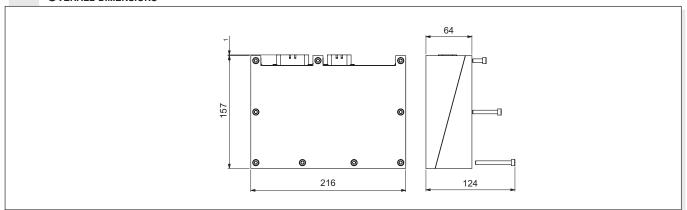
-40C° ÷ +85°C

CONNECTOR 14 PIN

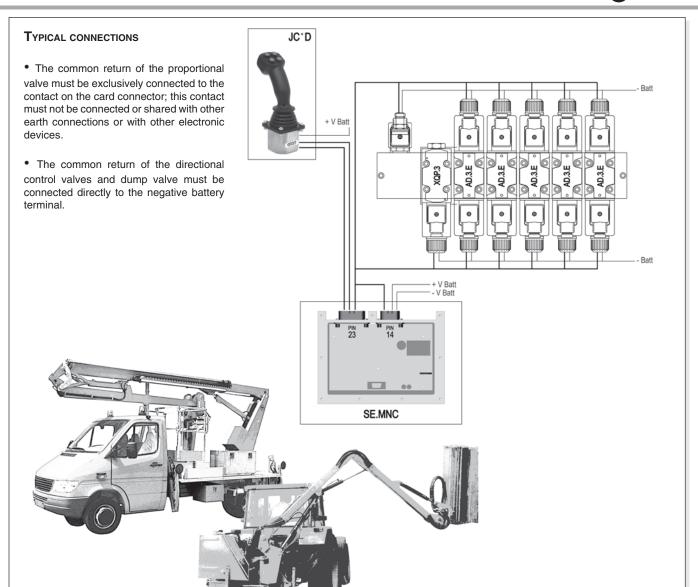
PIN	DESCRIPTION
1	On/off outputs EV 5A
2	On/off outputs EV 5B
3	Proportional output PROP EV 1
4	Proportional output
	PROP EV 2 (Not used)
5	Back to proportional output
	PROP EV 1
6	- V power
7	CAN_L (opzional)
8	CAN_H (opzional)
9	Back to proportional output
	PROP EV 2 (Not used)
10	+ V power (supply power circuits)
	Protect by using a 15A fuse
11	+ V power (supply logical circuits)
12	- V power
13	0V auxiliary voltage output
14	+10V auxiliary voltage output, max. 100mA

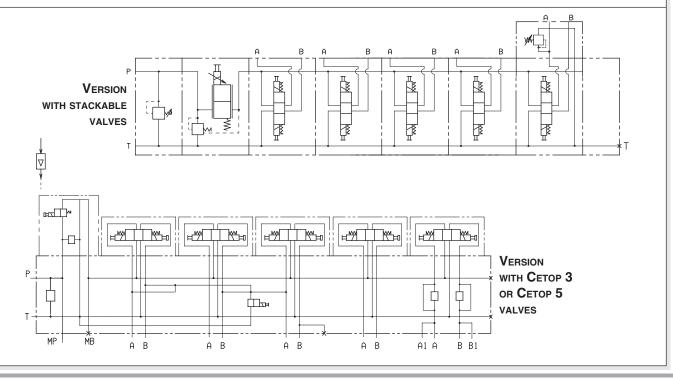
CONNECTOR 23 PIN

	CONNECTOR 23 PIN		
Pin	DESCRIPTION	Pin	DESCRIPTION
1	On/off output EV 1A	14	Signal input (IN4)
2	On/off output EV 1B		connected to 1 joystick JC5 switch
3	On/off output EV 2A	15	Signal input (IN5)
4	On/off output EV 2B		connected to 2 joystick JC5 switch
5	On/off output EV 3A	16	+10V auxiliary voltage output, max. 100mA
6	On/off output EV 3B	17	0V auxiliary voltage output
7	On/off output EV 4A	18	Input JOY2 Analogue signal 0+10V
8	On/off output EV 4B		(Not used)
9	Output EV pressure relief valve	19	Input JOY1 Analogue signal 0+10V
10	Signal input (IN0)		connected to Y axis joystick JC5 signal
	connected to forward joystick JC5 switch	20	Signal input (IN6)
11	Signal input (IN1)		connected to 3 joystick JC5 switch
	connected to back joystick JC5 switch	21	Signal input (IN7)
12	Signal input (IN2)		connected to 4 joystick JC5 switch
	(Not used)	22	Signal input (IN8)
13	Signal input (IN3)		connected to 5 joystick JC5 switch
	(Not used)	23	Signal input (IN9)
			connected to operator present joystick JC5 switch



FUNCTIONAL LOGIC OF THE ACTIVE OUTPUTS


JOY1	IN0	IN1	IN4	IN5	IN6	IN7	IN8	IN9	ATCIVE OUTPUTS
>0.2V	Н		Н					Н	PropEV1 + EV1B + EV pressure relief valve
>0.2V		Н	Н					Н	PropEV1 + EV1A + EV pressure relief valve
>0.2V	Н			Н				Н	PropEV1 + EV2B + EV pressure relief valve
>0.2V		Н		Н				Н	PropEV1 + EV2A + EV pressure relief valve
>0.2V	Н				Н			Н	PropEV1 + EV3B + EV pressure relief valve
>0.2V		Н			Н			Н	PropEV1 + EV3A + EV pressure relief valve
>0.2V	Н					Н		Н	PropEV1 + EV4B + EV pressure relief valve
>0.2V		Н				Н		Н	PropEV1 + EV4A + EV pressure relief valve
>0.2V	Н						Н	Н	PropEV1 + EV5B + EV pressure relief valve
>0.2V		Н					Н	Н	PropEV1 + EV5A + EV pressure relief valve


>0.2V = The analogue signal on the JOY 1 input is maintained above 0.2V H = the corresponding digital input leads to a positive battery voltage

OVERALL DIMENSIONS

N°	DESCRIPTION	PIECES
1	Box	1
2	Seal	1
3	Cover	1
4	Screw TCEI M5x14 UNI 5931	3
_5	Screw TCEI M5x14 UNI 5931	2
6	Screw TCEI M5x14 UNI 5931	4
7	SEMNC card	1

10 . 20 \/DC

SVP						
TECHNICAL DATA	Ch. IX page 23					
CONNECTION SCHEME	Ch. IX page 24					
CHARACTERISTIC CURVES	Ch. IX page 25					
SPARE PARTS	Ch. IX page 26					

SVP... Proportional amplifier FOR MOTORS AND PUMPS CONTROL

The SVP electronic amplifier with current feedback current is designed to control a pump with variable flow rate or two pumps for open circuit or two motors.

The amplifier has two proportional outputs with current feedback and a single power output without current feedback. Each proportional output is controlled by an analogue input; it is therefore possible to control two proportional outputs independently (independent control for the proportional outputs, option I in the ordering code).

Through the selection of a switch positioned on the card, it is possible to control both proportional outputs with only one analogue input (symmetrical control for the proportional outputs, option S in the ordering code).

The symmetrical control is used for hydrostatic pumps in closed-circuit with two solenoids control. In the independent control mode, the two proportional outputs are mutually independent and it is possible to control separately two open-circuit pumps with single solenoid control or two motors. The card also has an output for brake release control: this is ON when the output current of the two proportional channels is at the minimum value. As the output current of one of the channels exceeds an adjustable percentage above the minimum current, the brake output state changes to OFF.

MAIN FEATURES

- External control signal for enabling card operation (it is possible to by-pass this function).
- Linear and independent output current rise and drop ramps on both proportional outputs.
- Control of the card is possible via potentiometer, voltage signal (±5V) from an external source or current signal from an external source (±20mA).
- Differential analogue inputs logic.
- Adjustment of brake control output current value.
- Adjustment of the control parameters from digital interface panel built in on the card.
- Two digital outputs (power 0.5A) to signal card failure or anomaly.
- Short-circuit protection for the two proportional outputs.
- Protection for input power polarity inversion.
- Over voltage protection system.

ADDITIONAL FEATURES

Valtage supply

- When ordering it is possible to select the external control signal version (standard) with separate controls to enable the two proportional outputs (upon
- Third analogue input (±5v or ±20mA) for pressure or position transducer (upon request).
- Digital Input (12V or 24V) for encoders or inductive speed sensors (upon request).
- CAN-bus data transmission interface (upon request).

ORDERING CODE

SVP

Proportional amplifier for motors and pumps control

- **X** = For proportional solenoids 0.88 A (24 V DC) (STANDARD)
- Y = For proportional solenoids 1.76 A (12 V DC)
- **Z** = For proportional solenoids 2.50 A (9 V DC)

Independent control of the proportional output

S = Symmetric control of the proportional output (STANDARD)

Ε

- **E** = With external card enabling control (STANDARD)
- **K** = With external enabling control and proportional output enabling control
- 0 = Without enabling control

1

1 = With voltage input ±5V (STANDARD)

2 = With current input ±20mA

ST

ST= Version with setting panel (STANDARD)

CN=Version with CAN interface

00

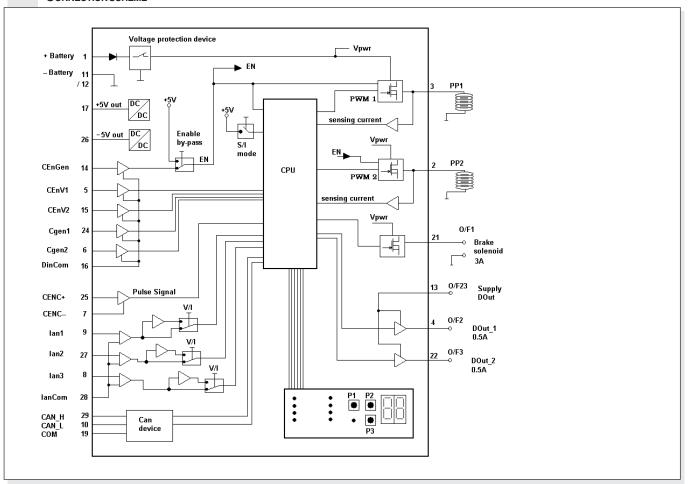
NONE (STANDARD)

D1

Serie 1 digital model

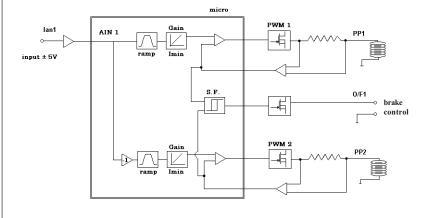
Connectors and electrical contacts included in the fourniture.

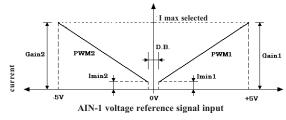
registered mark with reference to the EU Community Directives, in accordance with the following norms:


EN61000-6-1, EN61000-6-3

TECHNICAL DATA

Voltage supply	10 ÷ 30 VDC		
Max input current	8 A		
Max output current for each proportion	nal channel 2.5 A		
Max output current for brake control of	output 3 A		
Analogue external reference signal for	r proportional control ±5V, or ±20mA		
Resistance of external potentiometer	2KΩ ÷ 10 KΩ		
Adjustable current rise time ramp	0 ÷ 20 sec		
Adjustable current drop time ramp	0 ÷ 20 sec		
Adjustable min. output current for each proportional channel 0 ÷ 50% of set Max output current			
Adjustment of current gain for each pr	roportional channels 50% ÷ 100% of Max current		
Brake adjustment release	0 ÷ 50% of set Max output current		
Connector	AMP 29 poles Connector and contacts included (*)		
Operative environment temperature	-40°C ÷ +80°C		
Protection degree With correct	IP65 t connector assembling and wiring (*)		


(*) It is responsibility of the customer the assembling and the wiring of the connector supplied with the SVP proportional card.


CONNECTION SCHEME

CHARACTERISTIC CURRENT OUTPUT CURVES

SYMMETRIC OPERATION OF THE PROPORTIONAL OUTPUTS

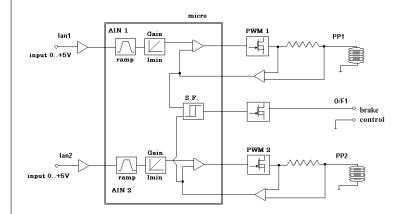
D.B. = dead band

I min = offset minimum current

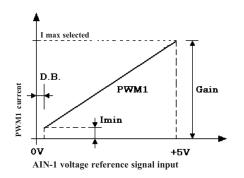
Gain = current gain

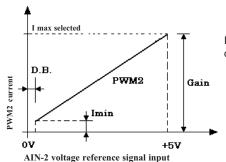
In this configuration, the command signal varies between -5V and +5V with 0V as the central value and the command signal is to be given on the analogue input lan 1.

Any command signals sent to analogue input 2 of the board are ignored.


In symmetric mode, when the reference signal is between 0V and -5V, the proportional output PWM 1 (PP1) is off, while the proportional output PWM 2 (PP2) is on. When the reference signal on the other hand is between 0V and +5V, the proportional output PWM 1 (PP1) is on, while the proportional output PWM 2 (PP2) is off.

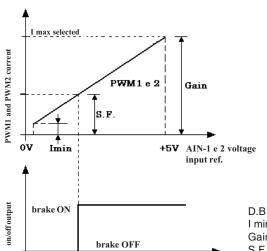
SVP... PROPORTIONAL AMPLIFIER FOR MOTORS AND PUMPS CONTROL




CHARACTERISTIC CURRENT OUTPUT CURVES

INDEPENDENT OPERATION OF THE PROPORTIONAL OUTPUTS

In this mode, the two outputs work independently and the proportional output PWM 1 (PP1) is controlled by the signal on the analogue input Ian 1 and the proportional output PWM 2 (PP2) is controlled by the signal on the analogue input Ian 2.


In this mode both proportional outputs may be on simultaneously.

D.B. = dead band

I min = offset minimum current

Gain = current gain

OUTPUT CHARACTERISTIC OF THE BRAKE COMMAND

Whatever the operating mode of the proportional outputs, be it symmetric or independent, the operating logic of the brake command is always the same. Set a current threshold value on the adjustment panel (SF). When the current on both proportional outputs drops below the set threshold (SF), the output of the brake is on. Whereas for the command output of the brake to be disabled, all it takes is for the current of one of the proportional outputs to exceed (SF).

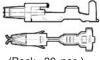
D.B. = dead band

I min = offset minimum current

Gain = current gain

S.F. = threshold brake release

SPARE PARTS AMP SEAL


(Pack. 30 pcs.)

Single wire seal CODE 828905-1*

(Pack. 20 pcs.)

Plug cavity sealing CODE 828906-1*

(Pack. 30 pcs.)

JPT contact

CODE 929937-3 o 929938-3*

Silicon facial sealing CODE 963222-1*

JPT housing connector (plug) 29P CODE 963449-2*

* AMP code

Spare parts kit, gaskets, connectors and electrical contacts: V89960000

9

JC3D...

ORDERING CODE

JC

Heavy duty single Joystick

3

Handle (3 switches)

D

Directional switches

_1__

Functional operation singe axis (Y)

Α

With operator present trigger switch

**

00 = No variants

GD = With silicon rubber protection on the switches handle

1

Serial number

JC.3.D... HEAVY DUTY SINGLE JOYSTICK BASE

This is a rugged joystick with single axis Y potentiometer and ergonomic handle. The joystick has a spring return lever for center position. The panel material for this joystick and thickness must be strong and rigid. The panel thickness should have a dimension of minimum 3.5mm and maximum 6mm. The joystick has two directional microswitches per Y axis. The handle has 3 pushbuttons and it is possible to have the operator present switch too.

The IP protection of joystick is referred to above mounting panel and it can be max. IP65. N.B. below mounting panel the rating is IP40.

APPLICATIONS

The joystick has been designed for aerial platform, agricultural and forestry machinery. The use of this product with the Aron electronic control unit for non contemporary movements gives the maximum advantage for hydraulic solutions controlled with a proportional valve.

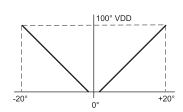
Electrical features

Potentiometer resistance $1.4 \div 2.2 \text{ K}\Omega$ Max. supply voltage VDD = 32V DC Max. supply voltage Y pot 0-100% VDD Max. output current 5 mA

Directional switches

Maximum supply voltage VCC = 32V DC
Max. output current 200 mA
Resistive load

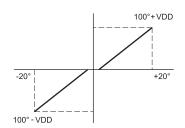
Mechanical features


Ambient operating temperature -40°C ÷ +80°C
Protection according to DIN IP65
Shocks Level 20G Type ½ sine 6ms
Number of shocks 1350 per axis

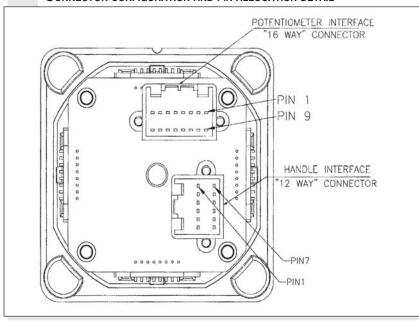
• **C** Registered mark for industrial environment with reference to the compatibility. European norms:

- IEC 61000-4-3 "Electromagnetic immunity"
- EN6550022 "Electromagnetic emissions"
- Product in accordance with RoHS 2002/95/CE Europe Directive.

Connectors and electrical contacts included in the fourniture.


POTENTIOMETER OUTPUT AXIS Y

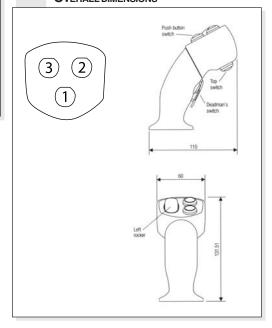
In order to obtain the Y axis output signal from the joystick as indicated in the diagram over it is necessary to connect the pin 9 and 11 of the AMP 16 way connector at +VDD, and to connect the pin 12 of the AMP 16 way connector at 0V.


IIn order to obtain the Y axis output signal from the joystick as indicated in the diagram over it is necessary to connect the pin 9 of the AMP 16 way connector at 0V, and to connect the pin 11 of the AMP 16 way connector at +VDD.

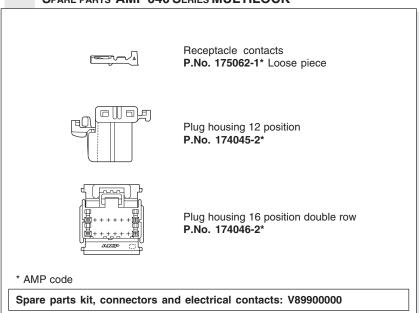
In order to obtain the Y axis output signal from the joystick as indicated in the diagram over it is necessary to connect the pin 9 of the AMP 16 way conector at -VDD, and to connect the pin 11 of the AMP 16 way connector at +VDD.

03/2008/e

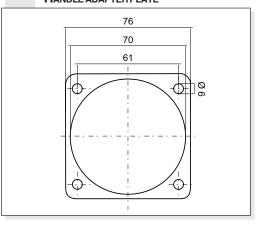
CONNECTOR CONFIGURATION AND PIN ALLOCATION DETAIL

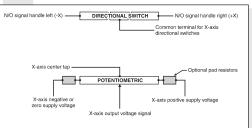

FROM THE 16 WAY PRIMARY POTENTIOMETER CONNECTIONS SINGLE POTENTIOMETER PER Y AXIS

AMP		Pin allocation description
		•
1	Υ	Switch track forward
9	Υ	Pot track back
10	Υ	Pot track signal
11	Υ	Pot track forward
12	Υ	Pot track centre tap
13	Υ	Switch track common
14	Υ	Switch track back
16	Υ	Switch track centre on


12 WAY HANDLE CONNECTIONS

AMP	Pin allocation description
2	Switch 3 - contact N/O
3	Switch 2 - contact N/O
4	Switch 1 - contact N/O
8	Operator present trigger switch
11	Switch track common
12	Operator present trigger switch


OVERALL DIMENSIONS


SPARE PARTS AMP 040 SERIES MULTILOCK

HANDLE ADAPTER PLATE

ANALOGUE JOYSTICK CONTROLLERS

JC5D...

ORDERING CODE

JC)

Heavy duty single Joystick

Handle (5 switches)

Directional switches

Functional operation

- 1 = singe axis (Y)
- 2 = dual axis (XY)

A = With operator present trigger switch

B = Without operator present trigger switch

00

No variants

1 Serial number

JC.5.D... HEAVY DUTY SINGLE JOYSTICK BASE

This is a rugged joystick with potentiometer and ergonomic handle. The joystick has a spring return lever for center position. Single axis Y or dual axes XY are available. The panel material for this joystick and thickness must be strong and rigid. The panel thickness should have a dimension of minimum 3.5mm and maximum 6mm. The joystick has two directional microswitches per axis. The handle has 5 pushbuttons and it is possible to have the operator present switch too.

The IP protection of joystick is referred to above mounting panel and it can be max. IP65. N.B. below mounting panel the rating is IP40.

APPLICATIONS

The joystick has been designed for aerial platform, agricultural and forestry machinery. The use of this product with the Aron electronic control unit for non contemporary movements gives the maximum advantage for hydraulic solutions controlled with a proportional valve.

Electrical features

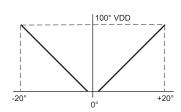
 $\begin{array}{lll} \mbox{Potentiometer resistance} & 1.4 \div 2.2 \ \mbox{K}\Omega \\ \mbox{Max. supply voltage} & \mbox{VDD} = 32 \mbox{VDD} \\ \mbox{Max. supply voltage X and Y pot} & 0 - 100\% \mbox{VDD} \\ \mbox{Max. output current} & 5 \mbox{ mA} \\ \end{array}$

Directional switches

Maximum supply voltage VCC = 32V DC
Max. output current 200 mA
Resistive load

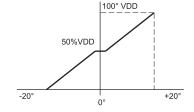
Mechanical features

 $\begin{array}{lll} \mbox{Mechanical angle} & \pm 20^{\circ} \\ \mbox{Maximum operating load} & 390 \ \mbox{N} \\ \mbox{(Measured 130 mm above the mounting surface)} \\ \mbox{Mechanical Life (X and Y axis)} & 7.500.000 \ \mbox{cycles} \\ \mbox{Weight (handle include)} & 0,900 \ \mbox{Kg} \end{array}$

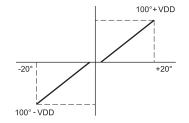

Ambient operating temperature $-40^{\circ}\text{C} \div +80^{\circ}\text{C}$ Protection according to DIN IP65 Shocks Level 20G Type ½ sine 6ms Number of shocks 1350 each axis

• **(E** Registered mark for industrial environment with reference to the compatibility. European norms:

- IEC 61000-4-3 "Electromagnetic immunity"
- EN6550022 "Electromagnetic emissions"
- Product in accordance with RoHS 2002/95/CE Europe Directive.


Connectors and electrical contacts included in the fourniture.

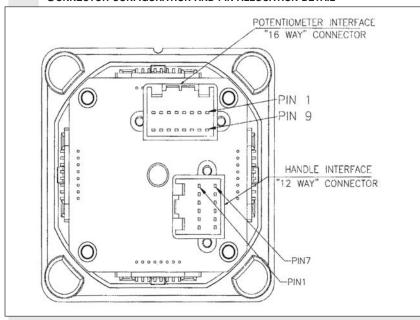
POTENTIOMETER OUTPUT AXIS X,Y


In order to obtain the output signal from the joystick as indicated in the diagram over it is necessary:

- for the X axis output signal, connect the pin 3 and 5 of the AMP 16 way connector at +VDD, and connect the pin 6 of the AMP 16 way connector at 0V.
- for the Y axis output signal, connect the pin 9 and 11 of the AMP 16 way connector at +VDD, and connect the pin 12 of the AMP 16 way connector at 0V.

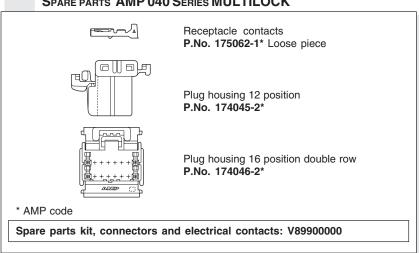
In order to obtain the output signal from the joystick as indicated in the diagram over it is necessary:

- for the X axis output signal, connect the pin 3 of the AMP 16 way connector at 0V, and connect the pin 5 of the AMP 16 way connector at +VDD.
- for the Y axis output signal, connect the pin 9 of the AMP 16 way connector at 0V, and connect the pin 11 of the AMP 16 way connector at +VDD.



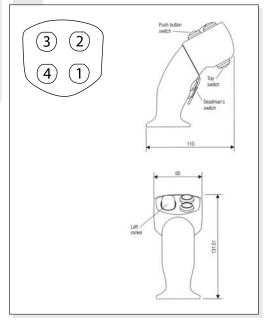
In order to obtain the output signal from the joystick as indicated in the diagram over it is necessary:

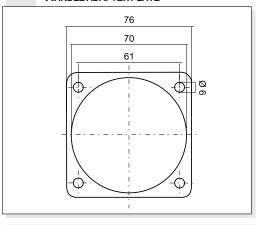
- for the X axis output signal, connect the pin 3 of the AMP 16 way connector at -VDD, and connect the pin 5 of the AMP 16 way connector at +VDD.
- for the Y axis output signal, connect the pin 9 of the AMP 16 way conector at -VDD, and connect the pin 11 of the AMP 16 way connector at +VDD.


CONNECTOR CONFIGURATION AND PIN ALLOCATION DETAIL

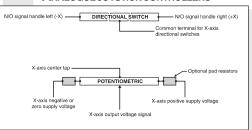
40						
16	WAV	PRIMARY	POTENT	IOMETER	CONNECTIONS	٠

AND		Din ellegation description	
AMP		Pin allocation description	
		Single potentiometer per axis	
1	Υ	Switch track forward	
2	Χ	Switch track centre on	
3	Χ	Pot track left	
4	Χ	Pot track signal	
5	Χ	Pot track right	
6	Χ	Pot track centre tap	
7	Χ	Switch track common	
8	Χ	Switch track left	
9	Υ	Pot track back	
10	Υ	Pot track signal	
11	Υ	Pot track forward	
12	Υ	Pot track centre tap	
13	Υ	Switch track common	
14	Υ	Switch track back	
15	Χ	Switch track right	
16	Υ	Switch track centre on	


SPARE PARTS AMP 040 SERIES MULTILOCK


12 WAY HANDLE CONNECTIONS

AMP	Pin allocation description
1	Switch 4 - contact N/O
2	Switch 3 - contact N/O
3	Switch 2 - contact N/O
4	Switch 1 - contact N/O
5	Switch 5 - contact N/O
8	Operator present trigger switch
11	Switch track common
12	Operator present trigger switch


OVERALL DIMENSIONS

HANDLE ADAPTER PLATE

ANALOGUE JOYSTICK CONTROLLERS

JC.F.D...

ORDERING CODE

JC

Joystick

F

Fingertip

D

Directional switches

1

Singolo asse

**

1

00 = No variants

GG = 10-90% output signal

Serial number

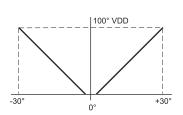
JC.F.D... SINGLE-AXIS FINGERTIP JOYSTICK (Q Gran

Developed for applications where ergonomics and system integrity are paramount, the JCFD is a compact, low profile joystick that provides precise fingertip control. Designed for use with an electronic controller, the plastic track generates analogue and switched reference signals, proportional to the distance and direction over which the handle is moved. The analogue output is configured to provide signals for fault detection circuits within the controller. A center tap on the analogue track provides an accurate voltage reference for the center position or a zero point for a bipolar supply voltage.

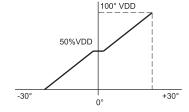
Electrical features	
Potentiometer resistance	5 KΩ
Max. supply voltage	VDD = 32V DC
Output signal Y pot	0 - 100% VDD
Output signal Y pot GG variant	10 - 90% VDD
Max. output current	2mA
Directional switches	
Maximum supply voltage	VCC = 32V DC
Max. output current	2mA
·	Resistive load
Mechanical features	
Mechanical angle	± 30°
Maximum operating load	50 N
(Measured 130 mm above the m	ounting surface)
Mechanical Life	5.000.000 cycles
Weight	0,045 Kg
Ambient operating temperature	-25°C ÷ +70°C

• **C** Registered mark for industrial environment with reference to the compatibility. European norms:

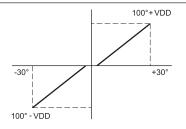
IP66


- IEC 61000-4-3 "Electromagnetic immunity"
- EN6550022 "Electromagnetic emissions"

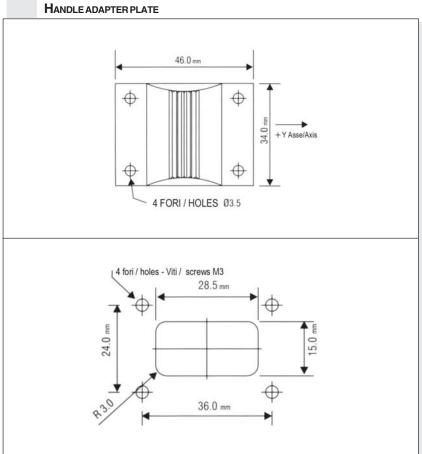
Protection according to DIN

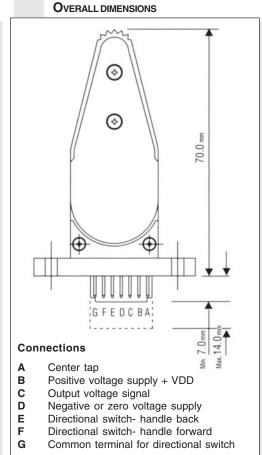

• Product in accordance with **RoHS** 2002/95/CE Europe Directive.

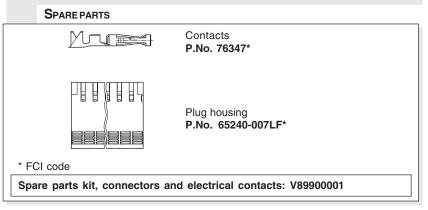
Connectors and electrical contacts included in the fourniture.

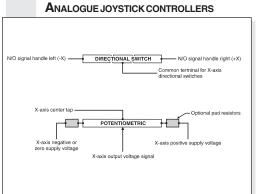

OUTPUT VOLTAGE SIGNAL

In order to obtain the output signal from the joystick as indicated in the diagram it is necessary: connect the Pin B and Pin D of the connector at +VDD, and connect the Pin A at 0V.




In order to obtain the output signal from the joystick as indicated in the diagram it is necessary: connect the Pin B of the connector at +VDD, and connect the Pin D at 0V.




In order to obtain the output signal from the joystick as indicated in the diagram it is necessary: connect the Pin B of the connector at +VDD, and connect the Pin D at -VDD.

TECHNICAL SYSTEMS CATALOGUE **ARON 2010**

ABBREVIATIONS

	7 12211211110110
AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	LOW PRESSURE CONNECTION
С	Stroke (MM)
CH	A CROSS FLATS
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
D P	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I%	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
Р	LOAD PRESSURE (BAR)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Qp	Pump flow (L/MIN)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

www.aron.it - sales@brevinifluidpower.com

General terms and conditions of sale: see website www.aron.it

Low / HIGH PRESSURE UNITS

BA.130	
	CH. X PAGE 2
BSC.5.69	
	Ch. X page 4

SPECIAL SUBPLATE MOUNTINGS WITH AUTOMATIC EXCLUSION REGENERATING CIRCUIT

BS5.RGA	
	Ch. X page 5
BS5.RGI	
	CH. X PAGE 5
AD.5.I.P.2T.1	
	Ch. I page 42

BA.130			
BA.10	Ch.XI page 2		
CMP.10	BFP CARTRIDGE CATALOGUE		
BSC.5.69	Ch.XI PAGE 4		
BC.5.30/32	Ch.VII page 26		
BC.5.40	Ch.VII page 25		
CETOP 5/NG10	Ch. I page 28		
ADP.5.E	Ch. I page 36		

ORDERING CODE

BA

Low/high pressure base

130

Capacity I/min

U*

Double pump exclusion valve setting

 $2 = 20 \div 90 \text{ bar}$

 $3 = 50 \div 190 \text{ bar}$

<u>c</u>

Type of adjustment: grub screw

*

Max. pressure valve setting

1 = max. 50 bar

2 = max. 150 bar

3 = max. 320 bar

00

No variant

1

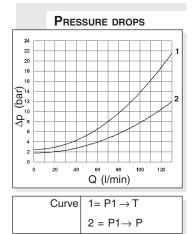
Serial No.

BA.130... Low / HIGH PRESSURE UNITS

The low/high pressure groups are usually employed in hydraulic systems fed by dual pumps that form a single pressure circuit. The main feature of this system consists in being able to set a pressure value in correspondence of which one of the two pumping sections is changed over to drain.

These groups are fitted with an adjustable maximum pressure valve to protect the hydraulic system.

2 pressure adjustment ranges are available for the exclusion valve, which is fitted with a steel seat, while the maximum pressure valve type CMP10 is available with 3 adjustment ranges.


Minimum permissible setting pressure depending on the spring: see cartridge valve type CMP10.

The series connection modular small block (BC.5.32) or the parallel connection type (BC.5.30) with blanking plate (BC.5.40) and the solenoid valve should be ordered separately.

For the subplate mounting ordering code see "Subplates" chapter; whilst for the valve ordering code see "Directional control valves" chapter.

The CETOP5/NG10 connector blocks have 3 rods.

Max. flow 130 l/min Max. operating pressure 320 bar Fluid viscosity $10 \div 500 \text{ mm}^2\text{/s}$ Fluid temperature $-25^\circ\text{C} \div 75^\circ\text{C}$ Ambient temperature $-25^\circ\text{C} \div 60^\circ\text{C}$ Max. contamination level class 10 in accordance with NAS 1638 with filter $β_{25}$ ≥ 75 Weight

Module ordering code

ВА

Subplate mounting

10

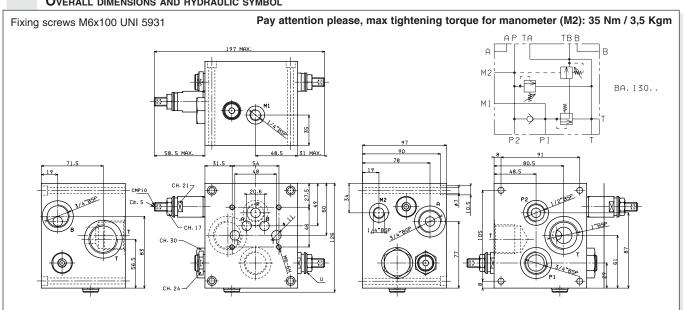
CETOP 5/NG10

**

Type of module:

62 = side CETOP interface

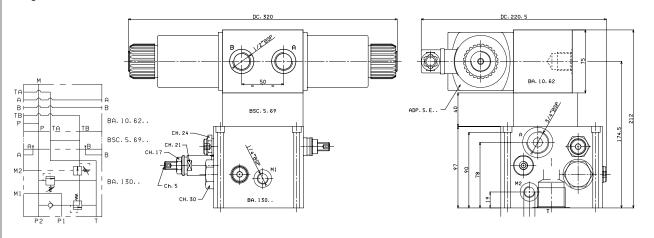
68 = with upper threaded connectors

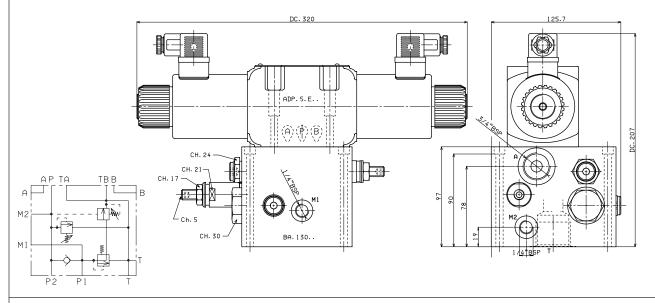

00

No variant

1

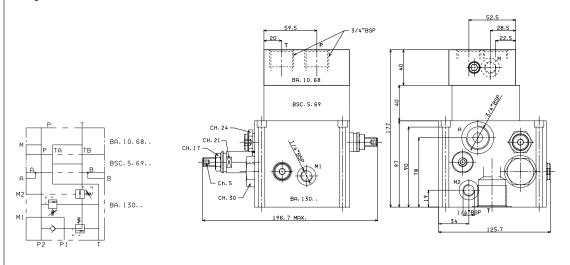
Serial No.


OVERALL DIMENSIONS AND HYDRAULIC SYMBOL


OVERALL DIMENSIONS AND HYDRAULIC SYMBOLS

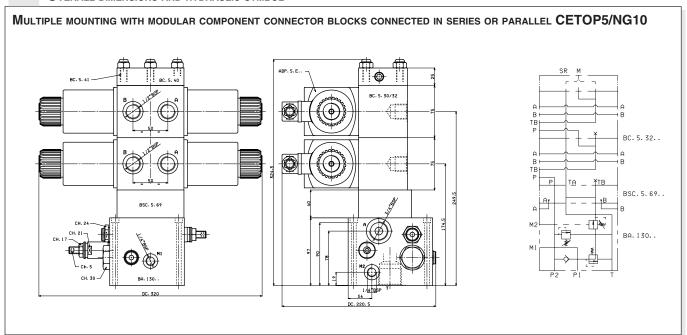
Side mounting for single solenoid valve CETOP5/NG10 (connector block BA.10.62)

Fixing screws M10x80 UNI 5931

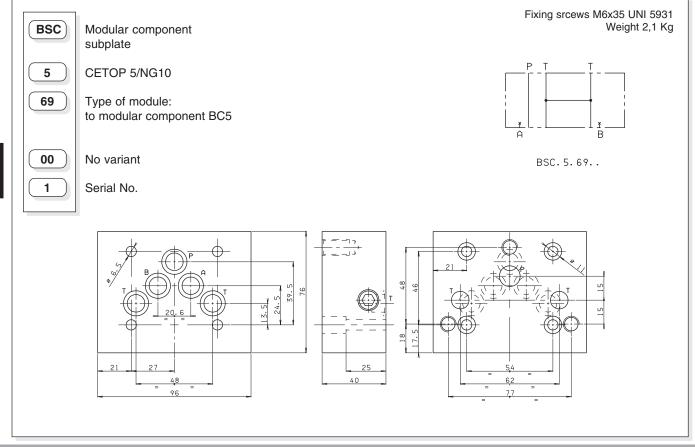


UPPER MOUNTING FOR SINGLE SOLENOID VALVE CETOP5/NG10

MOUNTING WITH THREADED CONNECTORS (CONNECTOR BLOCK BA.10.68)


Fixing screws M10x45 UNI 5931

10



OVERALL DIMENSIONS AND HYDRAULIC SYMBOL

BSC.5.69... Transformation mounting CETOP 5 Interface to MODULAR COMPONENT BC.5...

BS.5.RGA... / BS.5.RIA...

AD.5.I...

Ch. I Page 42

BS.5.R*A... Special subplate mountings with automatic exclusion regenerating circuit

These special subplates, with relief valve, have integrated a regenerative circuit which disengages automatically with increasing load.

This circuit allows a fast movement of the cylinder with low working pressure followed by an automatic disengagement of the regenerative function at the set pressure, consequent a higher hydraulic force is available.

Furthermore in the BS.5.RIA version the automatic reciprocating valve allows a continuous movement of the cylinder till the stop of the pump.

The reciprocating valve has a preferential position which allows the cylinder to begin always in the same position at the start of the working cycle (P \rightarrow B).

This systems are particularly useful for garbage compactors or small presses.

30 l/min Max. pump flow (suggested) Max. flow with regenerative connected 100 l/min Max. operating pressure (relief valve) 350 bar Max. operating pressure (exclusion) 200 bar Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter B₂₆≥75 Weight BS.5.RGA... version Kg 5,7 Weight BS.5.RIA... version Kg 9,4

TYPICAL INSTALLATION VALUES

- Cylinder area ratio (α) 1,6:1
- Pump flow (QP) 30 l/min
- Type of oil 46 cSt a 40°
- Regenerative flow (QR)

80 I/min (for RGA standard subplate) **75 I/min** (for RIA standard subplate)

- Min. exclusion pressure setting 70 bar
- Max exclusion pressure setting 200 bar
- Exclusion pressure drops 6 bar

ORDERING CODE

BS

Single subplate mounting

5

CETOP 5/NG10

RGA = Automatic exclusion regenerating circuit with presetting for AD.5.E...

RIA = Automatic exclusion regenerating circuit with AD.5.I.P.2T.1 included

U3 Ì

Exclusion range 20 ÷ 200 - see note (*)

*

Adjustment (relief valve)

M = Plastic knob

C = Grub screw

*

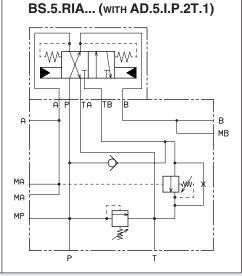
Max relief setting ranges

2 = max. 140 bar (yellow spring)

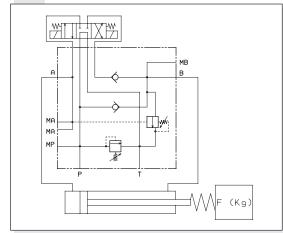
3 = max. 350 bar (green spring)

(**)

00 = No variant


2

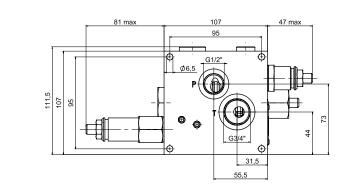
Serial No

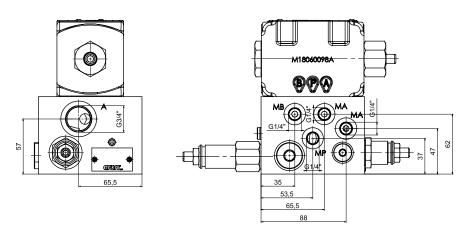

(*) These values depend on the hydraulic circuit configuration: flow, dimensions and system's frictions.

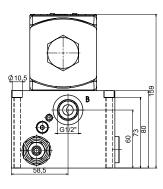
HYDRAULIC SYMBOLS

BS.5.RGA A P T B MA MA MA MP T

Typical installation for BS.5.RGA






OVERALL DIMENSIONS

BS.5.RIA... WITH AD.5.I.P.2T.1

10

STACKABLE VALVES

TECHNICAL CATALOGUE ARON 2010

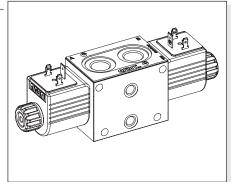
DIRECTIONAL CONTROL STACKABLE VALVES

ABBREVIATIONS

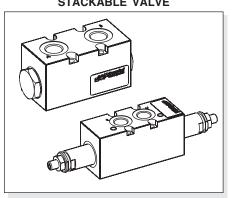
	7 12211211110110
AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	Low pressure connection
С	Stroke (MM)
CH	Across flats
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I%	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
Р	LOAD PRESSURE (BAR)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	Pump flow (L/MIN)
SE	ELASTICPIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

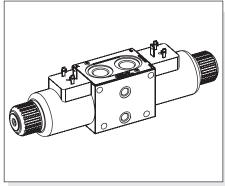
The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.



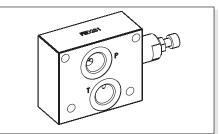
Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856


www.aron.it - sales@brevinifluidpower.com

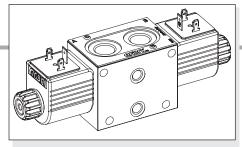
General terms and conditions of sale: see website www.aron.it


CH. XI PAGE 3
CH. XI PAGE 5
CH. XI PAGE 8
CH. XI PAGE 8
)
CH. XI PAGE 9
·
CAP. XI PAGE 10

Modular Stackable valve


CM.3.P	
	CH. XI PAGE 16
CM.3.M	
	CH. XI PAGE 17

PROPORTIONAL CONTROL STACKABLE VALVE


CH. XI PAGE 11
CH. XI PAGE 13
CH. XI PAGE 14
)
CH. XI PAGE 15
CAP. XI PAGE. 10

INLET AND OUTLET MODULE UNITS FOR STACKABLE VALVES

FLO	
FI.3	
	CAP. XI PAG. 10
FE02.3	
	CAP. XI PAG. 19
	OAF. AT FAG. 13
FE10.3	
	CAP. XI PAG. 20
	CAP. AT PAG. 20
FE10LS.3	
	CAP. XI PAG. 21
	CAP. AT PAG. 21
FE10.P.3	
	CAP. XI PAG. 22
	CAP. XI PAG. 22
FE.3	
	0 1/1 00
	Cap. XI pag. 23
FELS.3	
	Cap. XI pag. 23
FU.3	
	Cap. XI pag. 24

11

CDC.3.	*.E
INDIVIDUAL VALVE	Ch. XI page 3
STACKABLE VALVES	Ch. XI page 4
"A09" DC coils	Ch. XI page 8
"LF" VARIANTS	Ch. XI page 9
SCREWS AND STUDS	Ch. XI page 10
STANDARD CONNECTORS	Ch. XI page 25

CDC.3.*.E...

DIRECTIONAL CONTROL STACKABLE VALVE

Directional control stackable valve body is available in two different sizes: G3/8" or 9/16-18UNF (SAE 6).

The operation of the directional valve is electrical. The centring is achieved by means of calibrated length springs which immediately reposition the spool in the neutral position when the electrical signal is shut off. To improve the valve performance, different springs are used for each spool.

The solenoids, constructed with a protection class of IP65 in accordance with BS 5490 standards, are available in direct current form and different voltage. The electrical controls are equipped with an emergency manual control inserted in the tube.

The electrical supply connectors meet DIN 43650 ISO 4400 standards. On request, could be

available the following coil connection variants: AMP Junior connections; flying leads connections, with or without integrated diode; Deutsch connections with bidirectional integrated diode.

The body valve is white zinc plated.

Max. pressure ports P/A/B/T	250 bar
Max flow	30 l/min
Max excitation frequency	3 Hz
Duty cycle	100% ED
Fluid viscosity	$10 \div 500 \text{ mm}^2/\text{s}$
Fluid temperature	-25°C ÷ 75°C
Ambient temperature	-25°C ÷ 60°C
Max contamination level cla	ss 10 in accordance
with NAS 1	638 with filter B ₂₅ ≥75
Weight with one DC solenoid	1,25 Kg
Weight with two DC solenoids	1,5 Kg

MOBILE

Tab.2 - Standard spools Two solenoids, spring centred "C" Mounting Spool Covering Transient position MAOBW 01 + XI.II.II.II 02 XHHHHI 03 04*

ONE SOLENOID, SIDE A "E" MOUNTING				
Spool type	a/ A 0	Covering	Transient position	
01		+	X1.1[1]	
02	a/XHW	-		
03	a/XII	+	EZZX	
04*		-		
15	a/ XIII	-		
16	a/ X I w	+	X 1. 1 1 1	

0	ONE SOLENOID, SIDE B "F" MOUNTING				
Spool type	W O B B	Covering	Transient position		
01	WHITE	+			
02	WHILE	-			
03	WHILE	+			
04*	WHIX-	-			
15	WXIII-	-	XHII		
16	WXIII-	+	X1.1		

(**) It's suggest to order the variant without connectors. The connectors must be order separately. See Ch. XI Page 25

* Spool with price increasing

ORDERING CODE

CDC	Directional control stackable valve		
3	Size		
*	Body type (tab. 1)		
E	Electrical operator		
**	Spool (tab.2) For series connection use spool 04 only		
*	Mounting (tab.3)		
*	Voltage (tab.4)		
**	Variants (tab.5)		

For series connection configuration, a special individual stackable valve CDC.3.*.E.04.**.3T.2 (A B or G parallel body type only, with spool 04 type, 3T variant) must always be used as first element. For other individual stackable valve must use body D E or H connector series type with spool 04 only.

STANDARD

STANDARD

Serial No.

2

TAB.1 - BODY TYPE

Α	Ports G3/8" parallel
В	Ports 9/16 - 18UNF parallel
D*	Ports G3/8" series
E*	Ports 9/16 - 18UNF series
G	Attachment style, parallel presetting for modular valves
H*	Attachment style, series presetting for modular valves
L	Ports G3/8" parallel - LS vers.
М	Attachmentstyle, parallel-LS vers. presetting for modular valves
(*) For series ordering code	connection configuration see note below

Tab.4 - A09 - DC Voltage

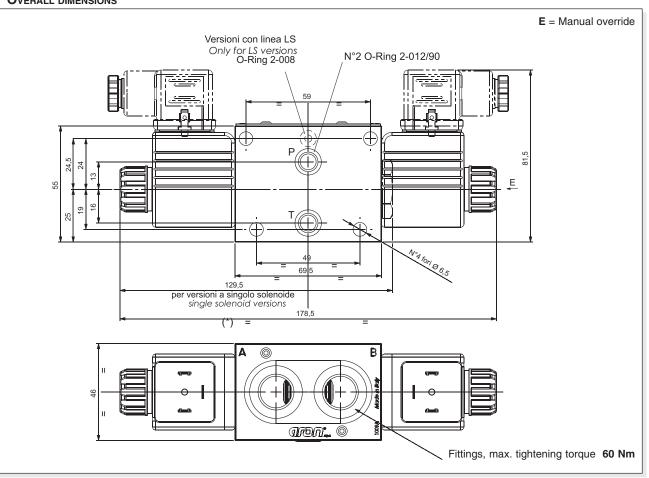
L M N	12V 24V 48V*	115Vac/50Hz 120Vac/60Hz with rectifier	
P Z X	110V* 102V* 205V* ←	230Vac/50Hz 240Vac/60Hz with rectifier	
W Without DC coils			
* Special voltage			

- The AMP Junior coil and with the flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.
- The Deutsch coil with bidirectional diode is available in 12V DC voltage only.

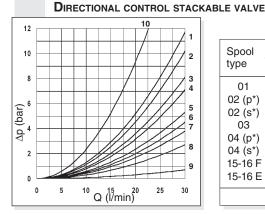
TAB.5 - VARIANTS (**)

		· ,
Cod.	Variant R	EPLACED CODE
S1	No variant	00
SV	Viton	V1
ES	Emergency button	E1
P2(*)	Rotary emergency but	itton P1
R5(*	Rotary emergency bu	tton 180°P5
PT	First elem. for series	connec. PT
-	Pilot light	X1
-	Rectifier	R1
LF	Emergency control le	ver LE
LR	Emergency control lev	ver 180° LG
-	Pilot light + Rectifier	XR
FL	coils with flying leads (2	250 mm) FL
LD	coils with flying leads (1	30 mm)
	and integrated diode	LD
AJ	AMP Junior connection	n AJ
СХ	Deutsch connec. bidr	.diode CX
Other variants relate to a special design		

F WOB SPECIALS (WITH PRICE INCREASING) G WAOD


0 B W

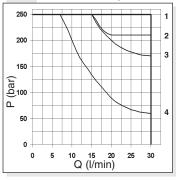
Н


(*) P2 and R5 Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

File: CDC3002 E XI • 2 01/2010/e

OVERALL DIMENSIONS

PRESSURE DROPS



Spool	Connections					
type	P→A	Р⊸В	A →T	В→Т	P→T	P/ Tpassing
01	4	4	4	4	/	9
02 (p*)	7	7	6	6	7	9
02 (s*)	7	7	6	6	8	/
03	4	4	6	6	/	9
04 (p*)	2	2	1	1	5	9
04 (s*)	2	2	1	1	3	/
15-16 F	6	6	5	10	/	9
15-16 E	6	6	10	5	/	9
Curve No.						

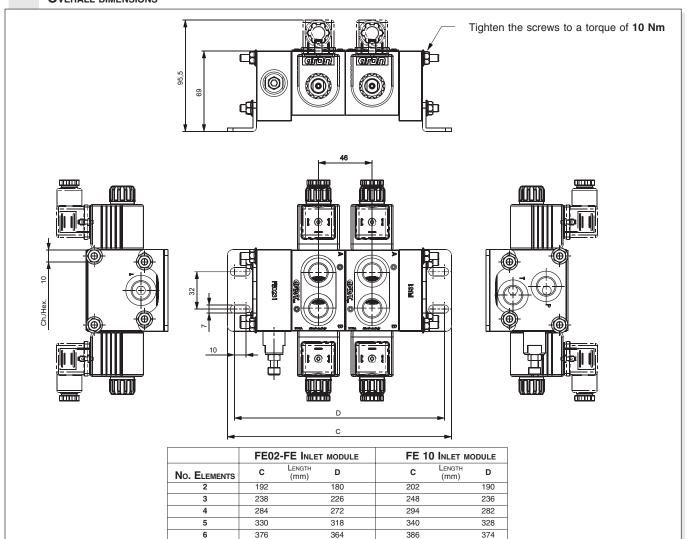
The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40 C°; the tests have been carried out at a fluid temperature of 40 C°.

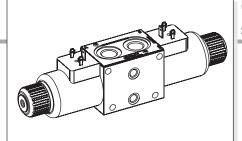
- (p*) Parallel connections
- (s*) Series connections

LIMITS OF USE (MOUNTING C-E-F)


Spool	n°
type	curve
01	1
02	1
03	3
04	2
15-16	1(4*)

The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 50C°. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40 degrees C. The values in the diagram refer to tests carried out with the oil flow in two directions simultaneously (e.g. from P to A and at the same time B to T).


In the cases where valves 4/2 and 4/3 are used with the flow in one direction only, the limits of use could have variations which may even be negative (See curve No 4 and Spool No 16 used as 2 or 3 ways). The tests were carried out with a counter-pressure of 2 bar at T port.


(4*) = 15 and 16 spools used as 2 or 3 way, follow the curve n°4

HYDRAULIC SYMBOLS AND INSTRUCTION OF CONNECTION

OVERALL DIMENSIONS

CD.3.*.E...

CH. XI PAGE 6

Ch. XI PAGE 7

Ch. XI PAGE 8

Ch. XI PAGE 9

Ch. XI PAGE 10

Ch. XI PAGE 25

CD.3.*.E... DIRECTIONAL CONTROL STACKABLE VALVE WITH D15 COILS

MOBILE

Directional control stackable valve body is available in two different sizes: G3/8" or 9/16-18UNF (SAE 6).

The operation of the directional valve is electrical. The centring is achieved by means of calibrated length springs which immediately reposition the spool in the neutral position when the electrical signal is shut off. To improve the valve performance, different springs are used for each spool. The solenoids, constructed with a protection class of IP66 in accordance with DIN 40050 standards, are available in direct current form and different voltage. The electrical supply connectors meet DIN 43650 ISO 4400 standards; AMP Junior, AMP Junior and integrated diode, flying leads, Deutsch DT 04 - 2P coil type, connectors are also available with built in rectifiers or pilot lights.

The body valve is white zinc plated.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccc} \text{Max excitation frequency} & 3 \text{ Hz} \\ \text{Duty cycle} & 100\% \text{ ED} \\ \text{Fluid viscosity} & 10 \div 500 \text{ mm}^2\text{/s} \\ \text{Fluid temperature} & -25^{\circ}\text{C} \div 75^{\circ}\text{C} \\ \text{Ambient temperature} & -25^{\circ}\text{C} \div 60^{\circ}\text{C} \\ \text{Max contamination level} & \text{class 10} & \text{in accordance} \\ & & \text{with NAS 1638 with filter } \text{B}_{25} \succeq 75 \\ \text{Weight with one DC solenoid} & 1,389 \text{ Kg} \\ \end{array}$	Max. pressure ports P/A/B/T	250 bar
$\begin{array}{cccc} \text{Duty cycle} & 100\% \text{ ED} \\ \text{Fluid viscosity} & 10 \div 500 \text{ mm}^2\text{/s} \\ \text{Fluid temperature} & -25^{\circ}\text{C} \div 75^{\circ}\text{C} \\ \text{Ambient temperature} & -25^{\circ}\text{C} \div 60^{\circ}\text{C} \\ \text{Max contamination level} & \text{class 10} & \text{in accordance} \\ & & \text{with NAS 1638 with filter } \text{B}_{25} {\geq} 75 \\ \text{Weight with one DC solenoid} & 1,389 \text{ Kg} \\ \end{array}$	Max flow	40 l/min
Fluid viscosity 10 \div 500 mm²/s Fluid temperature -25°C \div 75°C Ambient temperature -25°C \div 60°C Max contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25} \ge 75$ Weight with one DC solenoid 1,389 Kg	Max excitation frequency	3 Hz
Fluid temperature $-25^{\circ}\text{C} \div 75^{\circ}\text{C}$ Ambient temperature $-25^{\circ}\text{C} \div 60^{\circ}\text{C}$ Max contamination level class 10 in accordance with NAS 1638 with filter $\beta_{25}{\geq}75$ Weight with one DC solenoid 1,389 Kg	Duty cycle	100% ED
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Fluid viscosity	$10 \div 500 \text{ mm}^2/\text{s}$
Max contamination level class 10 in accordance with NAS 1638 with filter $\Omega_{25}{\geq}75$ Weight with one DC solenoid 1,389 Kg	Fluid temperature	-25°C ÷ 75°C
	Ambient temperature	-25°C ÷ 60°C
Weight with one DC solenoid 1,389 Kg	Max contamination level cla	ss 10 in accordance
	with NAS 1	1638 with filter ß ₂₅ ≥75
Weight with two DC solenoids 1,778 Kg	Weight with one DC solenoid	1,389 Kg
	Weight with two DC solenoids	1,778 Kg

ORDERING CODE

INDIVIDUAL VALVE

STACKABLE VALVES

"D15" DC coils

SCREWS AND STUDS

STANDARD CONNECTORS

"LF" VARIANTS

CD Directional control stackable valve (with D15 coil) 3 Size Body type (tab. 1) Ε Electrical operator Spool (tab.2) For series connection use spool 04 only Mounting (tab.3) Voltage (tab.4) ** Variants (tab.5)

connection series configuration, special individual stackable valve CD.3.*.E.04.**.3T.2 (A B or G parallel body type only, with spool 04 type, 3T variant) must always be used as first element. For other individual stackable valve must use body D E or H connector series type with spool 04 only.

Serial No.

2

TAR 3 MOUNTING

	TABLE INICONTING
	Standard
C	A O B W
E	a/AOW
F	WOB VP
Speci	ALS (WITH PRICE INCREASING)
G	WAO TE
Н	a/OBW

(*) P2 and R5 Emergency tightening torque max. $6 \div 9 \text{ Nm} / 0.6 \div 0.9 \text{ Kgm}$ with CH n. 22

TAB.1 - BODY TYPE

Α	Ports G3/8" parallel	
В	Ports 9/16 - 18UNF parallel	
D*	Ports G3/8" series	
E*	Ports 9/16 - 18UNF series	
G	Attachment style, parallel presetting for modular valves	
Н*	Attachment style, series presetting for modular valves	
L	Ports G3/8" parallel - LS vers.	
M	Attachment style, parallel-LS vers.	
	presetting for modular valves	
(*) For series connection configuration see note below ordering code		

Tab.4 - D15 coil (DC - 30W)

			•	•
L M V	12V 24V 28V*		115Vac/50Hz 120Vac/60Hz with rectifier	
N	48V*			_
Z	102V*	←	230Vac/50Hz	٦
Р	110V*	\rightarrow	240Vac/60Hz	
Х	205V*	← ′	with rectifier	╛
W	Without	DC coils	or connectors	
	codes are no e on the coils.		on the plate, their ar	е
* Spe	cial voltage	Э		

- · AMP Junior (with or without diode) and Deutsch and with flying leads coils, are available in 12V or 24V DC voltage only.
- · Plastic type coils (RS) are available in 12V, 24V, 28V or 110V DC voltage only.

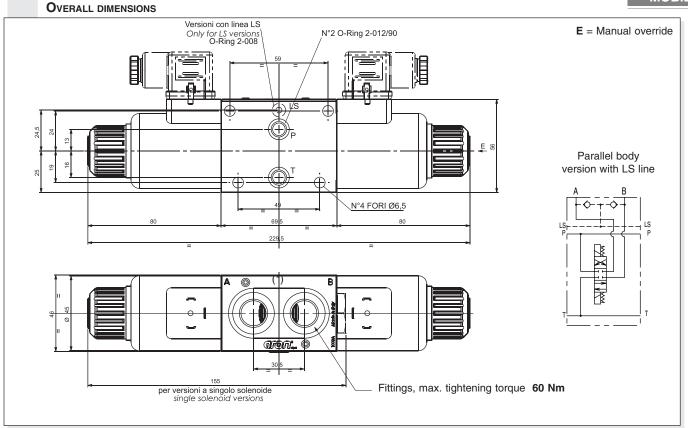
Tab.5 - Variants (**)

CODE	VARIANT	REPLACED (CODE
S1	No variant		00
SV	Viton		V1
-	Pilot light		X1
-	Rectifier		R1
ES	Emergency button		E1
P2(*)	Rotary emergency	button	P1
R5(*)	Rotary emergency	b. 180°	P5
ЗТ	First elem. for serie	s connec.	PT
AJ	AMP Junior connec	tion	AJ
AD	AMP Junior and inte	egr. diode	AD
SL	Coil with flying leads	(I75 mm)	SL
CZ	Coil with Deutsch	DT04-2P	CZ
RS	Palstic type coil		BR
LF	Emergency control	lever	LE
LR	Emergency control	lever 180°	`LG
-	Pilot light + Rectifier		XR
Other	variants relate to a	special de	sign

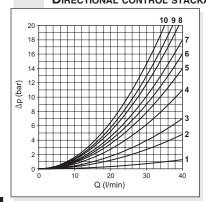
TAB.2 - STANDARD SPOOLS

Two	Two solenoids, spring centred "C" Mounting					
Spool type	MA OB W	Covering	Transient position			
01		+				
02		-	XHHHI			
03		+				
04*		-				

ONE SOLENOID, SIDE A "E" MOUNTING					
Spool type	A O	Covering	Transient position		
01		+			
02	a/XHW	-			
03	a/XII	+	FILE		
04*	a/ III	-			
15	a/XII///	-			
16	a/ X	+	X1.1		

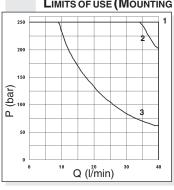

0	ONE SOLENOID, SIDE B "F" MOUNTING				
Spool type	W O B b	Covering	Transient position		
01	WHITE	+			
02	WHILE	-			
03	WHILE	+			
04*	WHINE	-			
15	wXIII	-	XHII		
16	~~XIII~	+			

^{*} Spool with price increasing


(**) It's suggest to order the variant without connectors. The connectors must be order separately. See Ch. XI Page 25

CD.3... DIRECTIONAL CONTROL STACKABLE VALVE WITH D15 COILS

PRESSURE DROPS DIRECTIONAL CONTROL STACKABLE VALVE



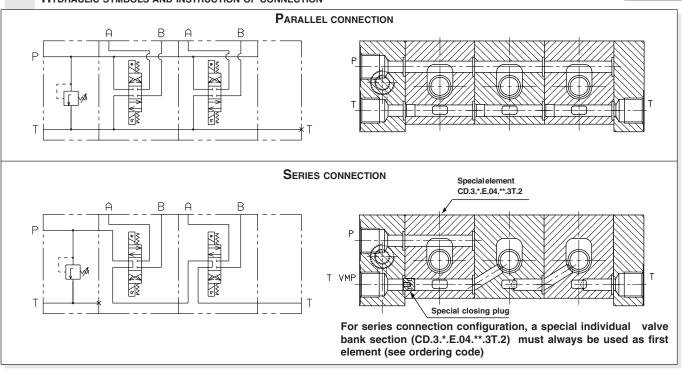
Spool		Connections				
type	P <i>→</i> A	P→B	A →T	B→T	P→T	P/ Tpassing
01	6	6	6	6	/	1
02 (p*)	5	5	4	4	2	1
02(s*)	5	5	5	5	3	/
03	6	6	5	5	/	1
04 (p*)	9	10	8	8	4	1
04 (s*)	9	9	8	8	5	/
15-16 E	5	7	5	9	/	1
15-16 F	7	5	9	5	/	1
Curve No.						

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40 C°; the tests have been carried out at a fluid temperature of 40 C°..

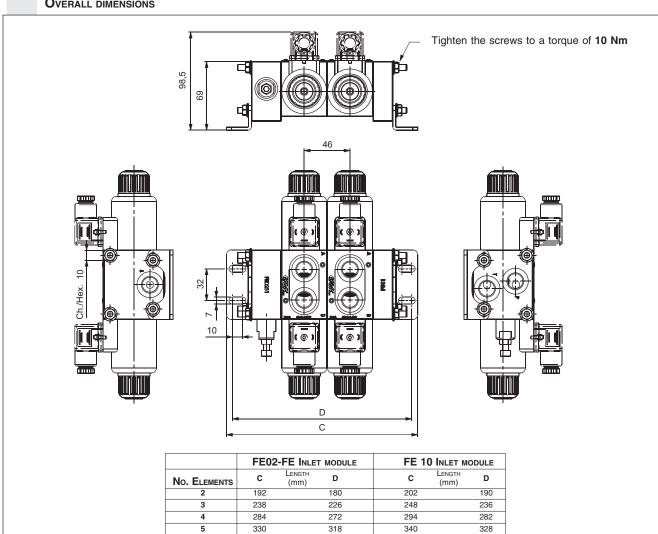
- (p*) Parallel connections
- (s*) Series connections

LIMITS OF USE (MOUNTING C-E-F)

Spool	n°
type	curve
01	1
02	1
03	1
04	2
15	3
16	1(3*)
	01 02 03 04 15

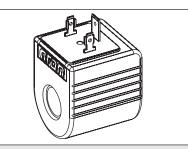

The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 50 C°. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40 degrees C. The values in the diagram refer to tests carried out with the oil flow in two directions simultaneously (e.g. from P to A and at the same time B to T).

In the cases where valves 4/2 and 4/3 are used with the flow in one direction only, the limits of use could have variations which may even be negative (See curve No 3 and Spool No 16 used as 2 or 3 ways). The tests were carried out with a counter-pressure of 2 bar at T port.


(3*) = 16 spools used as 2 or 3 way, follow the curve n°3

HYDRAULIC SYMBOLS AND INSTRUCTION OF CONNECTION

OVERALL DIMENSIONS

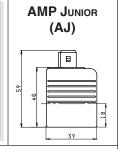


364

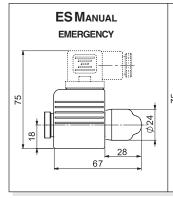
376

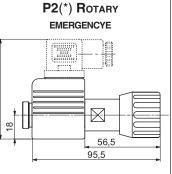
386

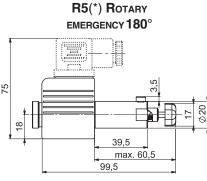
374

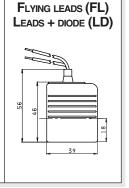


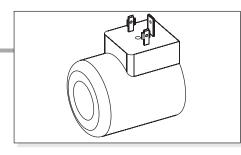
"A09" DC COILS FOR CDC.3...


() aron


- The AMP Junior coil and with the flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.
- The Deutsch coil with bidirectional diode is available in 12V DC voltage only.


Voltage (V)	Max winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±7%
12V	123°C	27	5.3
24V	123°C	27	21.3
48V*	123°C	27	85.3
102V*	123°C	27	392
110V*	123°C	27	448
205V*	123°C	27	1577
* SPECIAL VOLT	AGES		ETA09 - 04/2001/e

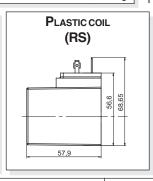


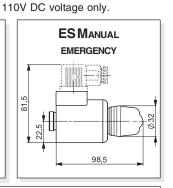


(*) P2 and R5 Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

"D15" DC coils for CD.3...

Type of protection (in relation to the connector used) IP 66 Number of cycles 18.000/h Supply tolerance $\pm 10\%$ Ambient temperature $-54^{\circ}\text{C} \div 60^{\circ}\text{C}$ Duty cycle 100% ED Insulation class wire H Weight 0,354 Kg

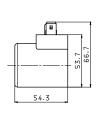

- AMP Junior coils (with or without
- available in 12V or 24V DC voltage only.

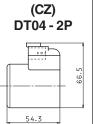

 The pastic type coil (RS variant) is available in 12V, 24V, 28V or

diode) and coils with flying leads

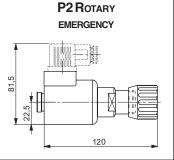
and coils type Deutsch, are

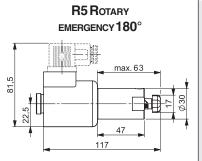
Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	110°C	30	4.8
24V	110°C	30	18.8
28V*	110°C	30	25.6
48V*	110°C	30	75.2
102V*	110°C	30	340
110V*	110°C	30	387
205V*	110°C	30	1375



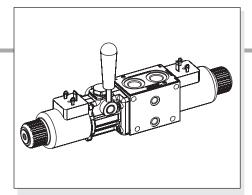

	(SL)	
-	54.3	

(*) SPECIAL VOLTAGES


FLYING LEADS


AMP JUNIOR (AJ) AJ + DIODE (AD)

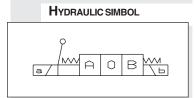
DEUTSCH



11

ETD15 - 04/2001/e

"LF" VARIANT - EMERGENCY CONTROL LEVER FOR STACKABLE VALVES (CDC/CD3)

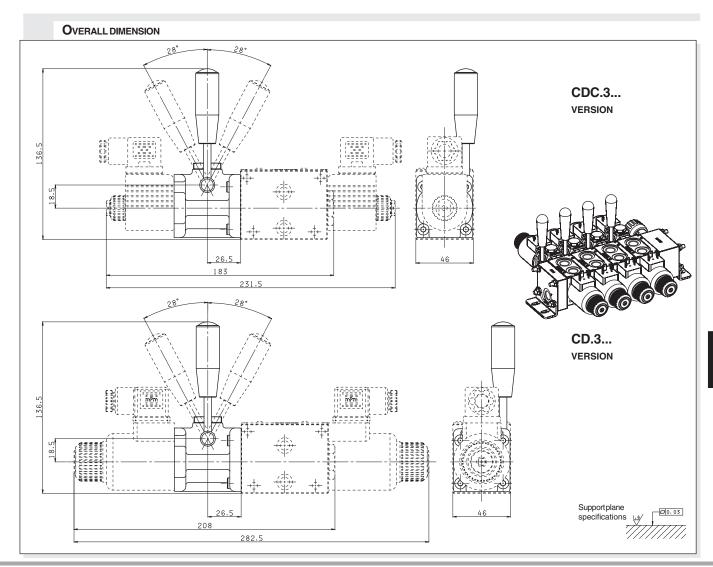

The emergency control lever for solenoid valves by Aron, represents a develop in terms of safety and flexibility among applied hydraulic components.

Thanks to his flexibility, the component was designed to be inserted between the valve body and the spool, providing total interchangeability between the different types of solenoid body valves manufactured by Aron. It is compatible with the standard CETOP 3 and stackable valves with threaded connections –G3/8" or 9/16-18UNF (SAE 6). The component is available for both directional control and proportional valves (for the last type of control please consult our Technical Department)

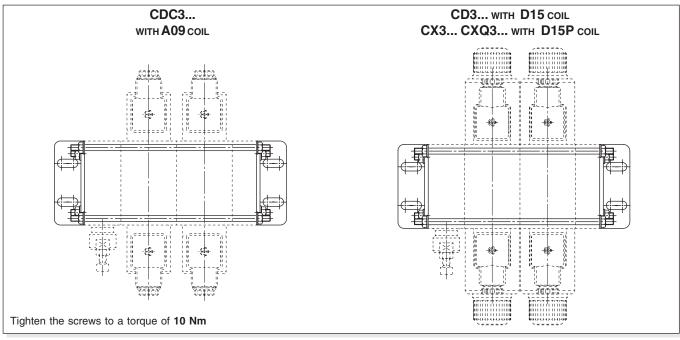
As an emergency lever applied to solenoid valves, the control can be used as a safety device in conformity with the industry standards , also playing an useful role in the event of power cuts. The control can be used in agricultural and mobile fields; the manual action can be used to carry out periodic maintenance work on mobile components of the vehicle , in perfectly safe working conditions.

Max operating pressure port T:
dynamic 160 bar
static 210 bar

Max operating pressure port P
for series connection configuration 160 bar

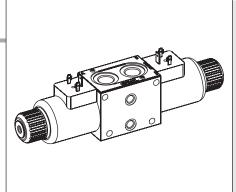

MOBILE

• Spools type: 01/02/03*/04/16/17/66


• MOUNTING TYPE: C/F/H

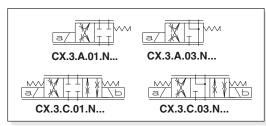
* The spool 03 is allowed only on CD3. Not permitted with CDC3

MOUNTING COMPATIBILITY				
CODE VALVE	Description	Coil	Voltage	
CDC.3	Stackable valve	A09	27 W	
CD.3	Stackable valve	D15	30 W	



CODE	COMPOSITION	LENGTH (mm)
89B50012	no. 2 elements with FE.02 or FE and FU	1170
V89B50013	no. 3 elements with FE.02 or FE and FU	210
V89B50014	no. 4 elements with FE.02 or FE and FU	260
V89B50015	no. 5 elements with FE.02 or FE and FU	310
V89B50016	no. 6 elements with FE.02 or FE and FU	350
V89B50017	no. 7 elements with FE.02 or FE and FU	400
V89B50018	no. 8 elements with FE.02 or FE and FU	440
V89B50022	no. 2 elements with FE.10 and FU	180
V89B50023	no. 3 elements with FE.10 and FU	220
V89B50024	no. 4 elements with FE.10 and FU	270
V89B50025	no. 5 elements with FE.10 and FU	310
V89B50026	no. 6 elements with FE.10 and FU	360
V89B50027	no. 7 elements with FE.10 and FU	410
V89B50028	no. 8 elements with FE.10 and FU	450
V89B50032	no. 2 elements with FE10P and FU	190
V89B50033	no. 3 elements with FE10P and FU	240
V89B50034	no. 4 elements with FE10P and FU	285
V89B50035	no. 5 elements with FE10P and FU	330
V89B50036	no. 6 elements with FE10P and FU	380
V89B50037	no. 7 elements with FE10P and FU	430
V89B50038	no. 8 elements with FE10P and FU	470
FIXING FEET	г кіт	
CODE	COMPOSITION	
V89980000	all	n. 2 fixing feet

11


CX.3.A / CX.3.C	SOLENOID OPERATING
PROPORTIONAL CONTROL	L STACKABLE VALVES

CX.3.A../CX.3.C.. series valves are used for controlling fluid direction and flow rate as a function of the supply current to the proportional control solenoid.

The individual valve is available in two different sizes: G3/8" or 9/16-

The body valve is white zinc plated.

Note - All the variants are considered without Hirschmann connector. The connectors must be order separately. See Ch. XI Page 25.

MOBILE

CX.3... Ch. XI page 12 INDIVIDUAL VALVE Ch. XI page 13 STACKABLE VALVES "D15P" PROPORT. SOLENOIDS Ch. XI PAGE 13 SCREWS AND STUDS Ch. XI PAGE 10 REM.S.RA... Ch. IX PAGE 4 REM.D.RA... Ch. IX PAGE 7 CEP.S... Ch. IX PAGE 2

OPERATING SPECIFICATIONS

Max. operating pressure ports P/A/B 250 bar 250 bar Max. operating pressure ports T - for dynamic pressure see note (*) 3 / 10 / 15 / 20 l/min Regulated flow rate Continuous 100% ED Relative duty cycle Type of protection IP 65 Fluid viscosity 10 ÷ 500 mm²/s -20°C ÷ 75°C Fluid temperature Max. contamination level class 8 in accordance with NAS 1638 with filter $B_{10} \ge 75$ Weight CX.3.A... (single solenoid) 1,389 Kg 1,778 Kg Weight CX.3.C... (double solenoid) Max. current 2.35A 1.76 A 0.88 A Solenoid coil resistance at 25°C (77°F) 2.25 Ohm 4.0 Ohm 16.0 Ohm

(*) Pressure dynamic allowed for 2 millions of cycles.

• Operating specifications are valid for fluid with 46 mm²/s viscosity at 40°C, using the specified ARON electronic control units.

ORDERING CODE

CX

STANDRAD CONNECTORS

Proportional control stackable valve

3

Size

A = Single solenoid

C = Double solenoid

Body type:

A = Ports G3/8" parallel

B = Ports 9/16 - 18UNF parallel

G = Presetting for modular valves (parallel)

Ch. XI page 25

L = Ports G3/8" parallel (LS version)

ELECTRONIC CONTROL UNIT

REM.S.RA.*.*. and REM.D.RA.*.*.

Card type control for single and double solenoid

CEP.S...

Electronic amplifier plug version

** Type of spool

Ν Symmetrical flow path control (see symbols table)

Flow rating I/min

1 = 3 l/min

2 = 10 l/min

3 = 15 l/min

4 = 20 l/min

Max. current at solenoid:

E = 2.35 A - Special coil

F = 1.76 A

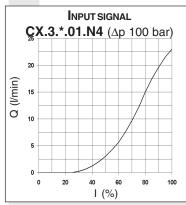
G = 0.88 A

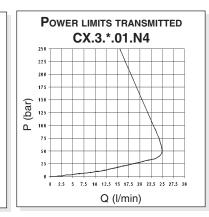
**

S1 = No variant

SV = Viton

ES = Emergency button

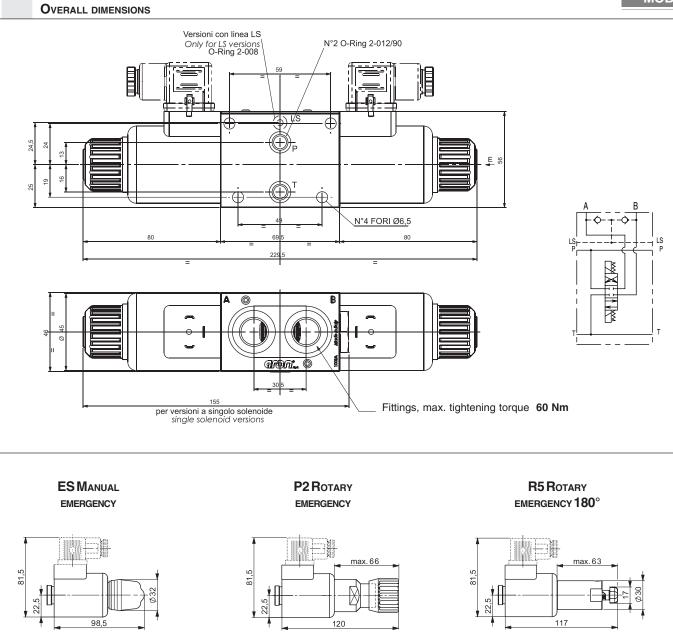

P2 = Rotary emergency


R5 = Rotary emergency 180°

2

Serial No.

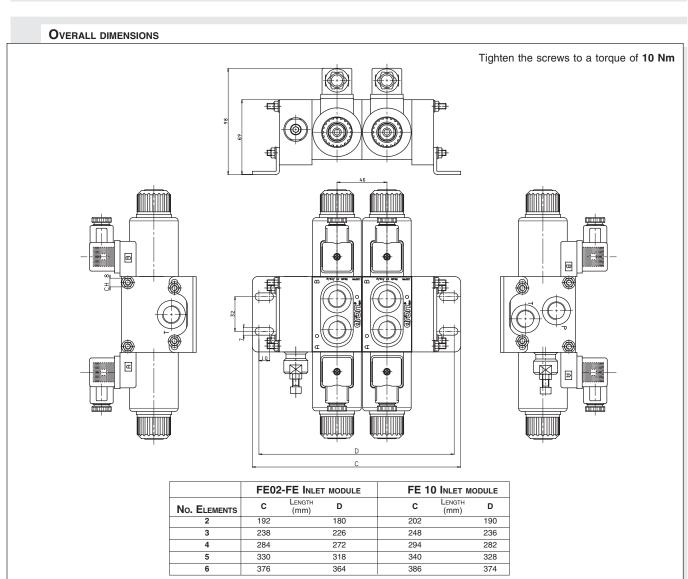
DIAGRAMS



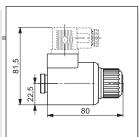
The fluid used is a mineral based oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

CX.3... Solenoid operating proportional control stackable valves

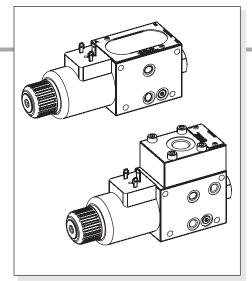




11



HYDRAULIC SYMBOLS AND INSTRUCTION OF CONNECTION



"D15P" PROPORTIONAL SOLENOIDS

Type of protection (in relation to connector used)	IP 66
Duty cycle	100% ED
Insulation class wire	Н
Weight (coil)	0,354 Kg
Weight (solenoid)	0,608 Kg
	ETD15P - 01/2002/e

CAG.S	
"D15P" PROPORT. SOLENOIDS	Ch. XI page 15
REM.S.RA	Ch. IX Pag. 4
CEP.S	Ch. IX Pag. 2
STUDS FOR MOUNTING	Ch. XI page 10
STANDARD CONNECTORS	Ch. XI page 25

CVO

ORDERING CODE

CXQ

Open loop 3 way proportional compensated flow regulator for module units and stackable valves

3

Size

С

3 way compensation

*

P = 3 way priority function version

T = 3 way version (with secondary line)

*

Nominal flow rates

H = 15 l/min

I = 25 l/min

D

with decompression

*

Max. current at solenoid **E** = 2.35 A - Special coil

F = 1.76 A

G = 0.88 A

**

S1 = No variant (Without connectors)

L7 = emergency lever

P2 = Rotary emergency

R5 = Rotary emergency 180°

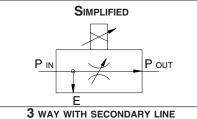
(2)

Serial No.

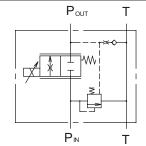
CXQ.3... OPEN LOOP PROPORTIONAL PRESSURE COMPENSATED STACKABLE FLOW REGULATORS

SETTORE MOBILE

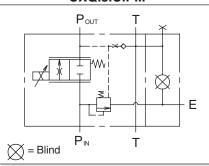
The open loop proportional flow regulator 3 way compensated with priority function is designed to regulate flow in proportion to an applied electrical current (REM or CEP.S power amplifier).

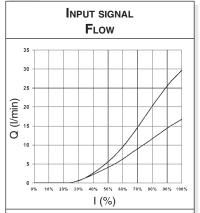

Flow regulation is independent both from load $-P_{\text{OUT}}$ port – and pump flow variations. Load compensation is achieved by a spool compensator, which holds the pressure drop constant across the proportional spool.

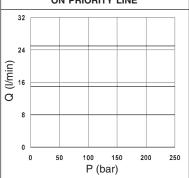
Operating specifications and overall size make this valve suitable to interlock to module units and stackable valves in order to combine a proportional control with directional control typical of stackable systems.

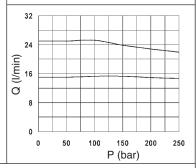

The body valve is white zinc plated.

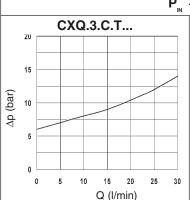
Note - All the variants are considered without Hirschmann connectors. The connectors must be order separately. See Ch. XI Page 25.

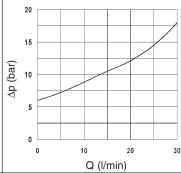

HYDRAULIC SYMBOLS


3 WAY WITH SECONDARY LINE CXQ.3.C.T...


3 WAY WITH PRIORITY FUNCTION CXQ.3.C.P...


DIAGRAMS


FLOW RATE BACK PRESSURE ON PRIORITY LINE


FLOW RATE BACK PRESSURE ON SECONDARY LINE

$\Delta P - PUMP FLOW$ $P_{_{IN}} \rightarrow T$

CXQ.3.C.P...

The fluid used is a mineral based oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

CXQ.3... OPEN LOOP PROPORTIONAL PRESSURE

COMPENSATED STACKABLE FLOW REGULATORS

OPERATING SPECIFICATIONS

Max. operating pressure ports $P_{in}/P_{out}/E/T$ Regulated flow rate

Decompression drain flow Relative duty cycle

Type of protection (in relation to the connector used)

Flow rate gain Fluid viscosity

Fluid temperature

Ambient temperature Max. contamination level

Weight CXQ.3.C.P... version

Weight CXQ.3.C.T... version

Max. current at solenoid Solenoid coil resistance at 25°C (77°F)

(*) Pressure dynamic allowed for 2 millions of cycles.

AMPLIFIER UNIT AND CONTROL

REM.S.RA.*.*...

electronic card for control single proportional solenoid valve

CEP.S...

250 bar

IP 66

15 / 25 l/min

max 0,7 l/min

10 ÷ 500 mm²/s

-20°C ÷ 75°C

-20°C ÷ 70°C

Kg 2,25

Kg 1,75

0.88 A

16.0 Ohm

Continuous 100% ED

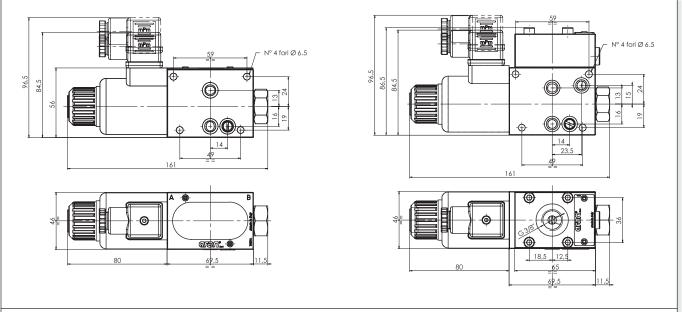
See diagram "Input signal flow"

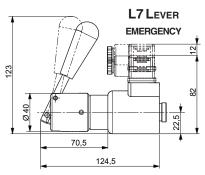
from class 7 to 9 in accordance with NAS 1638 with filter $B_{10} \ge 75$

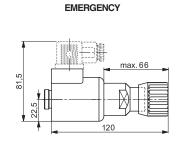
1.76 A

4.0 Ohm

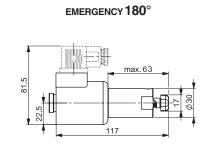
2.35A

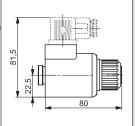

2.25 Ohm


Electronic amplifier plug version

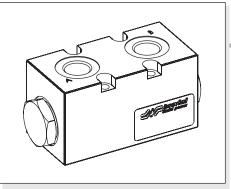

 Operating specifications are valid for fluid with 46 mm²/s viscosity at 40°C, using the specified ARON electronic control units.

OVERALL DIMENSIONS CXQ.3.C.T...


OVERALL DIMENSIONS CXQ.3.C.P...



P2 ROTARY


R5 ROTARY

"D15P" PROPORTIONAL SOLENOIDS

Type of protection (in relation to connector used)	IP 66
Duty cycle	100% ED
Insulation class wire	H
Weight (coil)	0,354 Kg
Weight (solenoid)	0,608 Kg
	ETD15P - 01/2002/e

רסח

CM.3.P...

CM.3.P... MODULAR PILOT OPERATED

Weight

CHECK STACKABLE VALVES

CM.3.P type modular check stackable valves allow one way free flow by raising a conical shutter, while in the opposite direction the fluid can return by means of a small piston piloted by the pressure in the other line.

They are available on single A or B lines, and on double A and B lines (see hydraulic symbols).

The body valve is white zinc plated.

SETTORE

MOBILE

1,25 Kg

Max. operating pressure 350 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Piloting ratio: 1:4 Max. flow 40 l/min Hvdraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm²/s a 50°C Fluid temperature -20°C ÷ 75°C Max. contamination level class 10 in accordance with NAS 1638 with filter B_{as}≥75

ORDERING CODE

CM

Modular stackable valve

3

Size

Piloted check valve

*

Ρ

Port sizes:

1 = G3/8"

2 = 9/16-18UNF

**

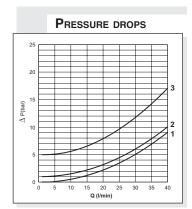
Control on lines A / B / AB

*

Minimum opening pressure

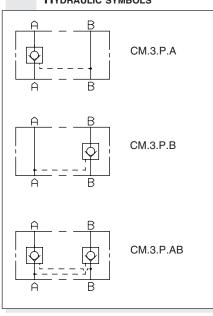
1 = 1 bar

5 = 5 bar

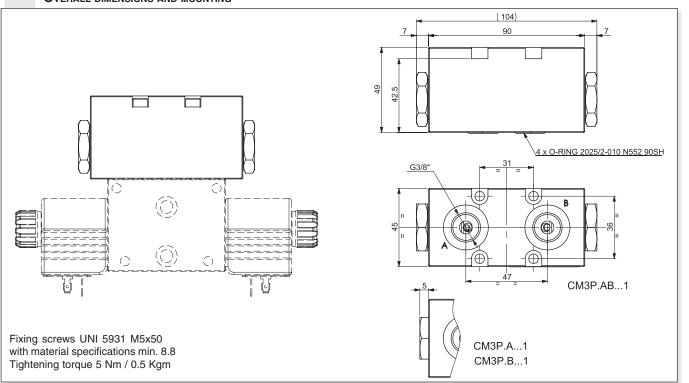

**

00 = No variant

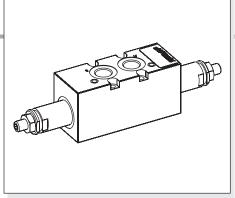
V1 = Viton


1

Serial No.



Curves: 1 = Piloted side flow 2 = 1 bar 3 = 5 bar


HYDRAULIC SYMBOLS

OVERALL DIMENSIONS AND MOUNTING

CM.3.M...

CMP.10... BFP CARTRIDGE CATALOGUE

CM.3.M... MODULAR MAX. PRESSURE STACKABLE VALVES

CM.3.M type pressure relief valves are available with a pressure range of 1 ÷ 320 bar.

Adjustment is by means of a grub screw.

Single on A or B lines, and double on AB lines versions are available, with drainage to T.

All versions can accept three types of springs with calibrated ranges as shown in the specifications.

The cartridge, which is the same for all versions, is the direct acting type CMP10.

The body valve is white zinc plated.

For the minimum permissible setting pressure depending on the spring, see minimum pressure setting curve.

320 bar
max. 15 bar
max. 50 bar
max. 150 bar
max. 320 bar
40 l/min
Mineral oils DIN 51524
10 ÷ 500 mm ² /s
-25°C ÷ 75°C
-25°C ÷ 60°C
class 10 in accordance
AS 1638 with filter B ₂₅ ≥75
1,66 Kg

Weight CM.3.M.AB...

MOBILE

1,68 Kg

ORDERING CODE

CM

Modular stackable valve

3

M

Size

Maximum pressure valve

*

Port sizes: **1** = G3/8"

2 = 9/16-18UNF

**

Adjustment on the lines: **A / B / AB**

С

Type of adjustment Grub screw

*

Setting ranges at port A

0 = max. 15 bar (neutral spring)

1 = max. 50 bar (white spring)

2 = max. 150 bar (yellow spring)

3 = max. 320 bar (green spring)

(*)

Setting ranges at port B (Omit if the setting is same as that at port A)

0 = max.15 bar (neutral spring)

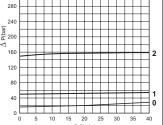
1 = max. 50 bar (white spring)

2 = max. 150 bar (yellow spring)

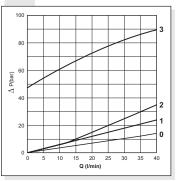
3 = max. 320 bar (green spring)

**

00 = No variant **V1** = Viton


V 1 = V

2

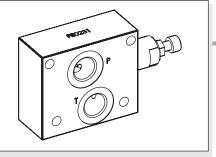

Serial No.

360 320 320 330

PRESSURE - FLOW RATE

MINIMUM SETTING PRESSURE

Curves n° 1 - 2 - 3 = setting ranges


HYDRAULIC SYMBOLS A T B CM.3.M.B CM.3.M.AB

OVERALL DIMENSIONS State of the state of th

MOUNTING

11

FE02.3...

FE02.3... INLET MODULE UNITS WITH PRESSURE RELIEF VALVE (UP TO 15 I/min)

MOBILE

Module units FE10.3... provide pressure relief valve with adjustable pressure setting ranges.

Manual adjustment is available by a grub screw. Maximum flow is 15 l/min.

The threaded ports (P and T) are available in two different sizes: G3/8" or 9/16-18UNF.

Max. operating pressure		250 bar
Setting ranges:	spring 1	30 bar
	spring 2	90 bar
	spring 3	180 bar
	spring 4	250 bar
Max. flow		15 l/min
Hydraulic fluids	Minera	al oils DIN 51524
Fluid viscosity		10 ÷ 500 mm ² /s
Fluid temperature		-25°C ÷ 75°C
Ambient temperature	е	-25°C ÷ 60°C
Max. contamination	level class	10 in accordance
W	ith NAS 1638	with filter B ₂₅ ≥75
Weight		0.6 Ka

ORDERING CODE

FE02

Inlet module unit (up to 15 l/min) with pressure relief valve

3

Port sizes:

1 = G3/8"

2 = 9/16-18UNF

С

Adjustment: Grub screw

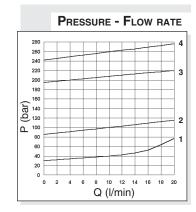
Setting ranges

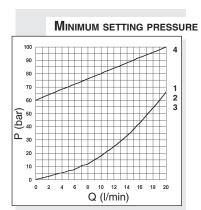
1 = max. 30 bar (white spring)

2 = max. 90 bar (yellow spring)

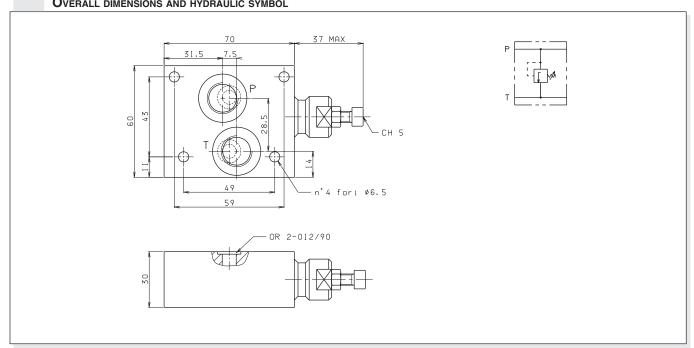
3 = max. 180 bar (green spring)

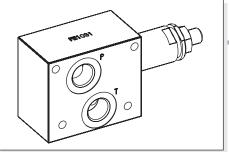
4 = max. 250 bar (orange spring)


**


00 = No variant

V1 = Viton


2


Serial No.

OVERALL DIMENSIONS AND HYDRAULIC SYMBOL

FE10.3...

FE10.3... INLET MODULE UNITS WITH PRESSURE RELIEF VALVE (UP TO 40 I/min)

SETTORE

MOBILE

Module units FE10.3... provide pressure relief valve with adjustable pressure setting ranges.

Manual adjustment is available by a grub screw or plastic knob. Maximum flow is 30 l/min.

The threaded ports (P and T) are available in two different sizes: G3/8" or 9/16-18UNF.

Max. operating pressure 320 bar Setting ranges: max. 50 bar spring 1 max. 150 bar spring 2 spring 3 max. 320 bar Max. flow 40 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B₂₆≥75 0,4 Kg Weight

ORDERING CODE

FE10

Inlet module unit (up to 40 l/min) with pressure relief valve

3

Size

*)

Port sizes:

1 = G3/8"

2 = 9/16-18UNF

*

Adjustment:

M = Plastic knob

C = Grub screw

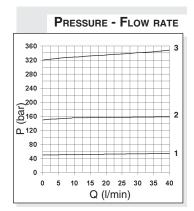
*

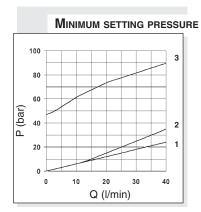
Setting ranges

1 = max. 50 bar (white spring)

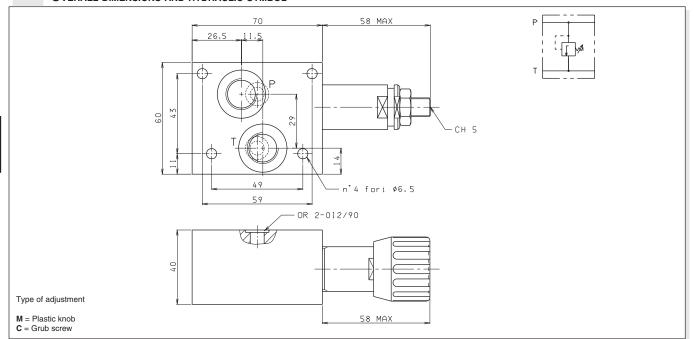
2 = max. 150 bar (yellow spring)

3 = max. 320 bar (orange spring)

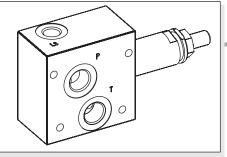

**


00 = No variant

V1 = Viton


2

Serial No.



OVERALL DIMENSIONS AND HYDRAULIC SYMBOL

FE10LS.3...

FE10LS.3... INLET MODULE UNITS WITH LS LINE WITH PRESSURE RELIEF VALVE (UP TO 40 I/min)

SETTORE

Module units FE10LS.3... provide pressure relief valve with adjustable pressure setting ranges.

Manual adjustment is available by a grub screw or plastic knob. Maximum flow is 30 l/min.

Available with threaded ports (P and T) sizes G3/8" and LS size G1/4".

Max. operating pressure 320 bar max. 50 bar Setting ranges: spring 1 spring 2 max. 150 bar max. 320 bar spring 3 Max. flow 40 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B₂₅≥75

ORDERING CODE

FE10LS

Inlet module unit (up to 40 l/min) with pressure relief valve and LS line

3

Size

*

Port sizes: **1** = G3/8"

*

Adjustment:

M = Plastic knob

C = Grub screw

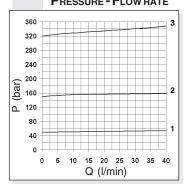
*

Setting ranges

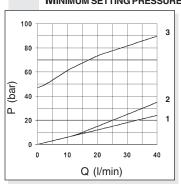
1 = max. 50 bar (white spring)

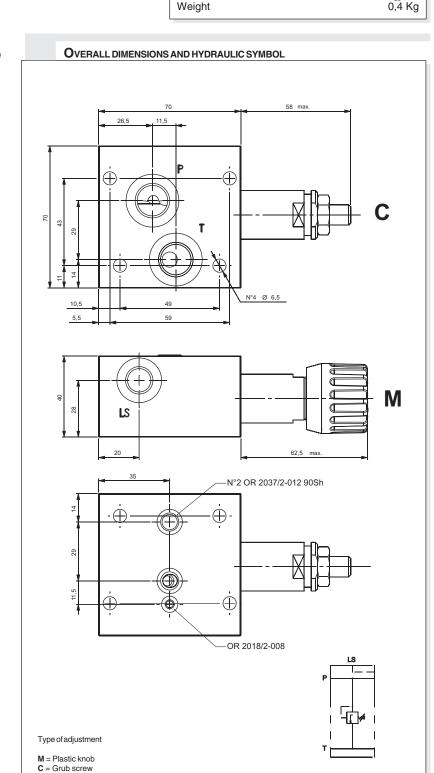
2 = max. 150 bar (yellow spring)

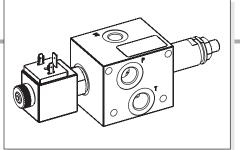
3 = max. 320 bar (orange spring)


**

00 = No variant


V1 = Viton


2 Serial No.


Pressure - Flow rate

MINIMUM SETTING PRESSURE

FE10.P...

STANDARD CONNECTORS

Ch. XI page 25

ORDERING CODE

FE10

Inlet module unit (up to 30 l/min) with pressure relief valve

Ρ

Electric venting valve

3

Size

Port sizes:

1 = G3/8"

2 = 9/16-18UNF

Adjustment:

M = Plastic knob

C = Grub screw

*

Setting ranges

1 = max. 50 bar (white spring)

2 = max. 150 bar (yellow spring)

3 = max. 320 bar (green spring)

Voltage for the electric venting valve (Tab. 1)

**

S1 = No variant

SV = Viton

AJ = AMP Junionr connection

CZ = Coil with Deutsch DT04-2P

2

Serial No.

FE10.P... INLET MODULE UNITS WITH PRESSURE RELIEF VALVE AND ELECTRICAL VENTING VALVE (UP TO 30 I/min)

Module units FE10.3... provide a pressure relief valve with adjustable pressure setting ranges and an electrical venting valve.

The pressure relief valve's manual adjustment is available by a grub screw or plastic knob. Maximum flow is 30l/min.

The threaded ports (P and T) are available in two different sizes: G3/8" or 9/16-18UNF.

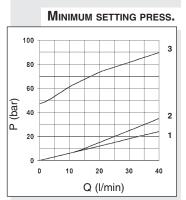
Note - All the variants are considered without Hirschmann connector. The connectors must be order separately. See Ch. XI Page 25.

MOBILE

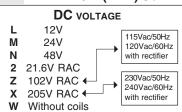
Max. operating pressure 300 bar 30 l/min Max. flow Hydraulic fluids Mineral oils DIN 51524 10 ÷ 500 mm²/s Fluid viscosity Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance

with NAS 1638 with filter β_{cr}≥75 Weight

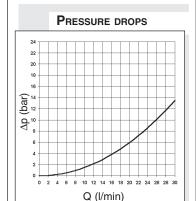
Setting ranges for pressure relief valve:

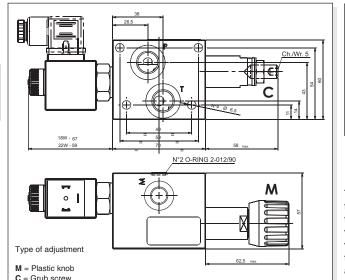

spring 1 max. 50 bar max. 150 bar spring 2 spring 3 max. 320 bar

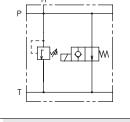
Features for electrical venting valve:


Max. excitation frequency 2 Hz Duty cycle 100% ED Type of protection (connector used depending) IP65

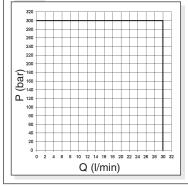
DIAGRAMS FOR PRESSURE RELIEF VALVE

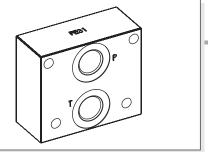

PRESSURE - FLOW RATE 320 280 200 160 120 ட 80 15 20 25 30 35 40 Q (I/min)




Tab.1 - 18W (22W) Coil

DIAGRAMS FOR ELECTRICAL VENTING VALVE




The tests were carried out with the solenoids at operating temperature, with a supply voltage 10% below nominal value and with a 40°C fluid temperature. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C.

LIMITS OF USE

() arar

MOBILE

FE.3...

FE.3... INLET MODULE UNITS NO PRESSURE RELIEF VALVE

Module units FE.3... no pressure relief valve.

The threaded ports (P and T) are available in two different sizes: G3/8" or 9/16-18UNF.

Max. operating pressure 250 bar Max. flow 40 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter $\theta_{25} \ge 75$ 0,3 Kg

MOBILE

43 09 fori Ø6.5 OR 2-012/90

Weiaht

ORDERING CODE

FΕ

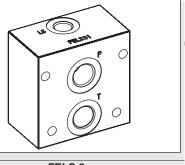
Inlet module unit no pressure relief valve

3 Size

Port sizes:

1 = G3/8"

2 = 9/16-18UNF


**

2

00 = No variant

V1 = Viton

Serial No.

FELS.3...

CODICE DI ORDINAZIONE

(FELS)

Inlet module unit no pressure relief valve with LS line

3

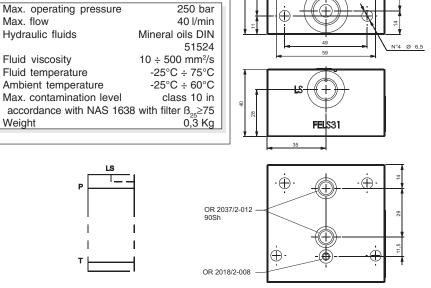
Size

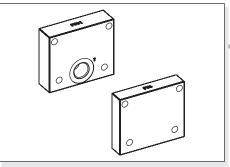
Port sizes: 1 = G3/8"

**

00 = No variant V1 = Viton

2

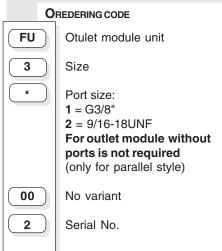

Serial No.

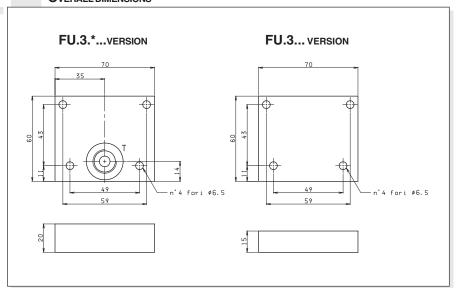

FELS.3... INLET MODULE UNITS WITH LS LINE NO PRESSURE RELIEF VALVE

Module units FE.3... no pressure relief valve.

Available with threaded ports (P and T) sizes G3/8" and LS size G1/4".

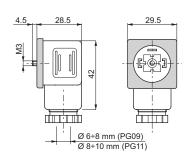
Max. operating pressure 250 bar Max. flow 40 l/min Hvdraulic fluids Mineral oils DIN 51524 Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter B₂₅≥75 Weight 0,3 Kg

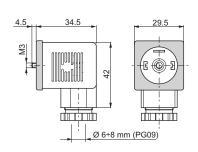

FU.3... OUTLET MODULE UNITS



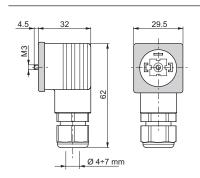
The threaded port (T) is available in two different sizes: G3/8" or 9/16-18UNF.

Outlet modules without ports and for parallel style only are availble.


OVERALL DIMENSIONS



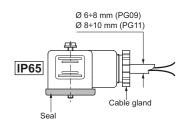
CONNECTORS FOR CONTROL VALVES IN ACCORDANCE WITH DIN 43650 / ISO 4400

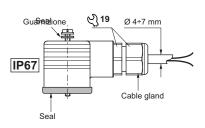

Connector	Protection level	Туре	Cable gland	Code
Standard		Black color	PG09	V86 05 0002
	IDOE	Grey color	PG09	V86 05 0004
	IP65	Black color	PG11	V86 05 0006
		Grey color	PG11	V86 05 0008
Lens cover with pilot light (*)		12 VAC/VDC	PG09	V86 10 0018
	IDCE	24 VAC/VDC	PG09	V86 10 0012
	IP65	115 VAC/VDC	PG09	V86 10 0020
		230 VAC/VDC	PG09	V86 10 0022

Screw tightening torque: 60Ncm

Connector	Protection level	Туре	Cable gland	Code
With rectifier (*)	IDCE	Black color	PG09	V86 20 0002
Inlet voltage 12÷230 VAC Outlet voltage 9÷205 VDC	IP65	Grey color	PG09	V86 20 0004
Lens cover with pilot light and rectifier (*) Inlet voltage 12÷230 VAC Outlet voltage 9÷205 VDC	12 VAC	PG09	V86 25 0018	
	24 VAC	PG09	V86 25 0019	
	IP65	48 VAC	PG09	V86 25 0020
		115 VAC	PG09	V86 25 0021
		230 VAC	PG09	V86 25 0022

Screw tightening torque: 60Ncm




Connector	Protection level	Туре	Cable gland	Code
With protection level IP67	IP67	Black color	_	V86 28 0001
		Grey color	_	V86 28 0002

Screw tightening torque: 60Ncm

(*) Don't use for proportional versions

ELECTRICAL FEATURES OF CONNECTORS

Description	IP65	IP67
AC rated voltage DC rated voltage	Max. 250 V Max. 300 V	Max. 250 V Max. 300 V
Pin conctat rated flow	10A	10A
Pin conctat max. flow	16A	16A
Max. section cable	1.5 mm ²	1.5 mm ²
Cable gland PG09 - M16x1,5	Ø cable 6 ÷ 8 mm	Ø cable 4 ÷ 7 mm
Cable gland PG11 - G 1/2" - M20x1,5	Ø cable 8 ÷ 10 mm	—
Protection level	IP65 EN60529	IP67 EN60529
Insulation class	VDE 0110-1/89	VDE 0110-1/89
Operating temperature	-40°C ÷ 90 C°	-20°C ÷ 80 C°

The degrees of protection indicate is guaranteed only if the connectors were properly mounted with his original seals.

TECHNICAL CATALOGUE ARON 2010

Oaron

ABBREVIATIONS

	ADDITEVIATIONS
AP	HIGH PRESSURE CONNECTION
AS	Phase Lag (DEGREES)
BP	Low pressure connection
С	Stroke (MM)
CH	A CROSS FLATS
Сн	INTERNAL ACROSS FLATS
DA	AMPLITUDE DECAY (DB)
DP	DIFFERENTIAL PRESSURE (BAR)
F	Force (N)
I%	INPUT CURRENT (A)
M	Manometer connection
NG	Knobturns
OR	SEAL RING
Р	LOAD PRESSURE (BAR)
PARBAK	Parbak ring
PL	Parallel connection
PR	REDUCED PRESSURE (BAR)
Q	FLOW (L/MIN)
Q P	PUMP FLOW (L/MIN)
SE	ELASTIC PIN
SF	Ball
SR	Series connection
X	PILOTING
Υ	Drainage

Incorrect use of the products described in this catalogue may cause harm to personnel and equipment. The technical information given for each product in this catalogue may be subject to variation, and the manufacturer reserves the right to make constructional modifications without giving prior notice. Each product presented, its data, features and technical specifications must therefore be examined and checked by members of the user's staff (possessing suitable technical knowledge) taking into consideration the intended use of product.

The user must, in particular, assess the operating conditions of each product in relation to the application that he intends to use it for, analysing the data, features and technical specifications in view of the proposed applications, and ensuring that, in use in the product, all of the conditions relating to the safety of personnel and equipment, also in the event of breakdown, are respected.

Via Natta, 1 (Z.I. Mancasale) 42124 Reggio Emilia (Italy) Tel. +39 0522 5058 Fax +39 0522 505856

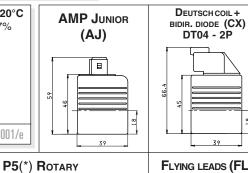
www.aron.it - sales@brevinifluidpower.com

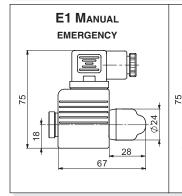
General terms and conditions of sale: see website www.aron.it

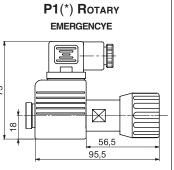
DC AND AC STANDARD COILS "UL RECOGNIZED" TYPE COILS

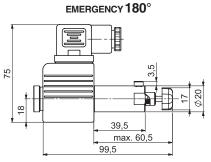
A09 DC Coll
Ch. XII page 2
20W DC Coil (OFF-HIGHWAY MACHINERY)
Ch. XII page 3
D15 DC Coil
Ch. XII page 4
PLASTIC TYPE D15 DC COIL (BR VARIANT)
Ch. XII page 5
40W Coil
Ch. XII PAGE 5
B14 AC SOLENOID
Ch. XII PAGE 6
A16 DC Coil
Ch. XII PAGE 7
D19 DC SOLENOID
Ch. XII PAGE 8
K16 AC SOLENOID
Ch. XII PAGE 9
22W DC Coil (FOR CARTRIDGE VALVE)
Ch. XII page 10
30W DC Coil (FOR CARTRIDGE VALVES)
CH. XII PAGE 11
"UL Recognized" Coils
Ch. XII page 12

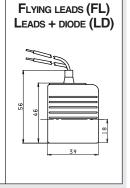
12

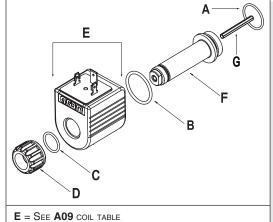

A09 DC coils


Oaron


Type of protection (in relation to connector used) IP 65 Number of cycle 18.000/h Supply tolerance ±10% Ambient temperature -30°C ÷ 60°C Duty cycle 100% ED Insulation class wire 0,215 Kg Weight


MOUNTING COMPATIBILITY		
AD.2.E	Ch. I page 4	
ADC.3	Ch. I page 5	
CDL.04	Ch. I page 61	
C3V.03	BFP CARTRIDGE CAT.	
CDC.3	Ch. V page 2	


Voltage (V)	Max winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±7%
12V	123°C	27	5.3
24V	123°C	27	21.3
48V*	123°C	27	85.3
102V*	123°C	27	392
110V*	123°C	27	448
205V*	123°C	27	1577
* Special volt	AGES		ETA09 - 04/2001/e



SPARE PARTS

(*) P1 and P5 Emergency tightening torque max. $6 \div 9 \text{ Nm} / 0.6 \div 0.9 \text{ Kgm}$ with CH n. 22

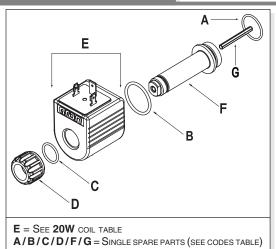
A09 DC - 27W Coil		Connections				
Voltage	Hirschmann (Standard) (00)	AMP JUNIOR (AJ)	FLYING LEADS + DIODE (130) (LD)	FLYING LEADS (250) (FL)	DEUTSCH + BIDIR. DIODE (CX)	
12 V (L) 24 V (M) 48V* (N) 102V* (Z) 110V* (P) 205V* (X)	M14310001 M14310002 M14310003 M14310008 M14310005 M14310009	M14320001 M14320002	M14330001 M14330002	M14070011 M14070012	M14340001 —	
(*)Special voltages FTA09-CODF - 00/2007/g						

E = SEE A09 COIL TABLE		
A/B/C/D/F/G = SINGLE SPARE PARTS	(SEE CODES	TABLE)

COMPLETE KIT	AD2E	CDL04	ADC3	CDC3	
COMPLETE SOLENOID'S TUBE	V85990008		V85990008 V8599000		90007
P1 ROTARY EMERGENCY	V89990016		V89990017		
P5 ROTARY EMERGENCY 180°	-		V15050098		
E1 MANUAL EMERGENCY	M19050003				

CODE	Α	В	С	D	E	F	G	Mounting
SPARE PARTS		O RING		RING NUT	COIL	TUBE	HEX. PUSCH ROD	AVAILABLE
AD2E	Q25831023	Q25830096		M37050036	ш	M83060003	M74490001 M74490002 M74490003	C - E - F G - H - I - L D - M
CDL04			Q25860013		TABL		M74490004	-
ADC3 / CDC3	Q25830024	Q25860023		M37050031	SEE	M83060004	M74460001 M74460002	C - E - F G - H
C3V03	Q25861025	Q25860024				M83060002	M74480001	-




"20W" DC Coils for off-highway machinery () (TO)

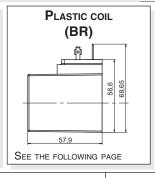
Type of protection	
(in relation to connector used)	IP 65
Number of cycle	18.000/h
Supply tolerance	±10%
Ambient temperature	-30°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	Н
Weight	0.212 Ka

Mounting compar	ΓΙΒΙLΙΤΥ
CRD.03	Ch. V page 34
C3V.05	Ch. V page 42

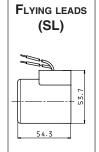
Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	-	20	7.2
			ET20W - 01/2004/e

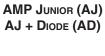
20W DC Coil	Connec	CTIONS
Voltage	Amp Junior (A)	DEUTSCH + BIDIR. DIODE (D)
12V (L)	M14321001	M14341001
ET20W-CODE - 00/2007/e		

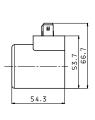
CODE	Α	В	С	D	Е	F	G
SPARE PARTS		O RING		RING NUT	COIL	TUBE	HEX. PUSCH ROD
CRD03 C3V05	Q25861010	Q25860023	Q25830022	M37050031 M37050036	See 20W	M83060007 M83060006	M74480003 M74480002

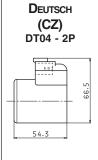

"D15" DC coils for Cetop 3

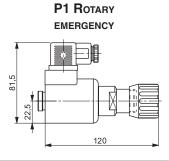
Oaron

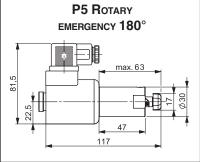

Type of protection	
(in relation to the connector used)	IP 66
Number of cycles	18.000/h
Supply tolerance	±10%
Ambient temperature	-54°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	Н
Weight	0,354 Kg

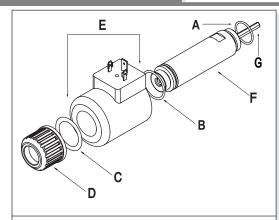

MOUNTING COMPATIBILITY				
CETOP 3	Ch. I page 8			
AD3.E	Ch. I page 11			
AD3.V	Ch. I page 13			
ADL.06	Ch. I page 64			
A.66	Ch. IV page 19			
CD.3	Ch. XI page 5			


Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	110°C	30	4.8
24V	110°C	30	18.8
28V*	110°C	30	25.6
48V*	110°C	30	75.2
102V*	110°C	30	340
110V*	110°C	30	387
205V*	110°C	30	1375
(*) Specia	AL VOLTAGES	ETD15 - 04/2001/e	









SPARE PARTS

E = SEE D15 COIL TABLE

A/B/C/D/F/G = SINGLE SPARE PARTS (SEE CODES TABLE)

D15 DC - 30W Coil		Connections			
Voltage	Hirschmann (Standard) (00)	Amp Junior (AJ)	AMP JUNIOR + DIODE (AD)	FLYING LEADS (175) (SL)	Deutsch (CZ)
12V (L) 24V (M) 28V* (V) 48V* (N) 102V* (Z) 110V* (P) 205V* (X)	M14450002 M14450004 M14450005 M14450006 M14450018 M14450008 M14450019	M14460002 M14460004	M14470002 M14470004	M14480002 M14480004	M14490002 -
(*)Special vo	LTAGES			ETD15-CO	DE - 00/2007/e

COMPLETE KIT	AD3E	CD3	ADL06	AD3V	A66
COMPLETE SOLENOID'S TUBE	V85990003				
P1 ROTARY EMERGENCY	V89990010				-
P5 ROTARY EMERGENCY 180°	V15050097 -				
E1 MANUAL EMERGENCY	M19050004				

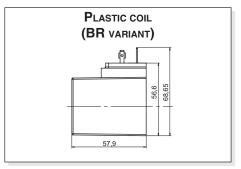
12

CODE	Α	В	С	D	Е	F	G	Mounting
SPARE PARTS		O RING		RING NUT	COIL	TUBE	HEX. PUSCH ROD	Available
AD3E CD3 AD3V	Q25830024	Q25860033	Q25830185	M37050030	: TABLE 315	M83130001	M74470001 M74470002	C - E - F - M G - H - I - L
ADL06					SEE		M74470003	D
A66							M74470004	-

PLASTIC COIL (BR VARIANT FOR "D15" COIL)

Type of protection (in relation t	to the connector) IP 66
Number of cycles	18.000/h
Supply tolerance	±10%
Ambient temperature	-54°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	Н
Weight	0,2 Kg

MOUNTING COMPATIBILITY				
CETOP 3	Ch. I page 8			
AD3.E	Ch. I page 11			
ADL.06	Ch. I page 64			

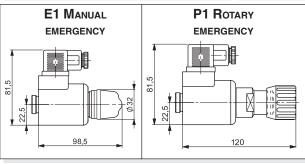

() aron

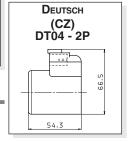
Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	110°C	30	4.8
24V	110°C	30	18.8
28V *	110°C	30	25.6
110V *	110°C	30	387
(*) SPECIAL VOI	TAGES		ETD15BR - 00/2006/e

SPARE PARTS

D15 PLASTIC COIL (PLASTIC COIL (DC / 30W)			
Voltage	Hirschmann (Standard)			
12V (L)	M14630002			
24V (M)	M14630004			
28V* (V)	M14630005			
110V* (P)	M14630008			
(*)Special voltages	ETD15BR-CODE - 00/2007/e			

	DE SPARE PARTS	FOR BR VARIANT
В	O RING (TUBE)	Q25830024
С	RING NUT	M37050030
D	O RING (RING NUT)	Q25830185
Е	O RING (COIL)	Q25830028
F	Тиве	M83130001
G	HEX. PUSCH ROD (MOUNTING C-E-F) (MOUNTING G-H-I) (MOUNTING D)	M74470001 M74470002 M74470003


- SEE BELOW FOR EXPLODED VIEW DRAWING
- SEE "D15" COIL STANDARD FOR BOTH EMERGENCY MANUAL E1 AND ROTARY P1.


"40W" DC COIL (FOR CDL.06...)

Type of protection (in relation to	the connector) IP 66
Number of cycles	18.000/h
Supply tolerance	±10%
Ambient temperature	-54°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	Н
Weight	0,354 Kg

MOUNTING COMPATIB	LITY
CDL.06	Ch. I page 63

VOLTAGE MAX. WINDING TEMPERATURE (V) (AMBIENT TEMPERATURE 25°C)		RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V 24V	135°C 135°C	40 40	3.6 14.4
			ET40W - 00/2004/e

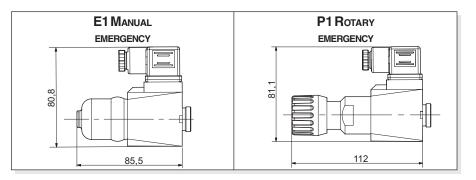
COMPLETE KIT	CDL06
P1 ROTARY EMERGENCY	V89990010
E1 MANUAL EMERGENCY	M19050004

	Α	B——
		G
		E
A - Sec 46	C D OW COIL TABLE	
A = SEE 41	JAA COIL LABLE	

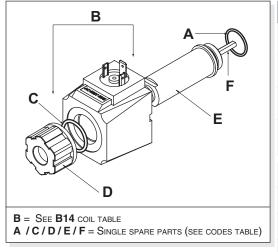
B/C/D/E/F/G = SINGLE SPARE PARTS (SEE TABLE)

40W D	C COIL	CONNECTIONS
VOLTAGE	i	Hirschmann (Standard)
12V (L)		M14600001
24V (M)		M14600002
		Deutsch (CZ)
12V (L)		M14610001
24V (M)		M14610002

	DE SPARE PARTS	FOR CDL06	
В	O RING (TUBE)	Q25830024	
С	RING NUT	M37050030	
D	O RING (RING NUT)	Q25830185	
Е	O RING (COIL)	Q25860033	
F	Тиве	M83130001	
G	HEX. PUSCH ROD	M74470003	
	ET40W-CODE - 00/2007/e		


"B14" AC SOLENOIDS FOR CETOP 3

Type of protection (in relation to the connector used) IP 65 Number of cycles 18.000/h Supply tolerance +10% / -10% Ambient temperature $-30^{\circ}\text{C} \div 60^{\circ}\text{C}$ Duty cycle 100% ED Insulation class wire H Weight 0,436 Kg


MOUNTING COMPATIBILITY		
CH. I PAGE 8		
H. I PAGE 11		

(*) serial No. 3 (AC voltage)

Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	Resistance at 20°C (OHM) ±10%
24V/50Hz - 24V/60Hz	100°C - 96°C	1.7
48V/50Hz - 48V/60Hz	_	_
115V/50Hz - 120V/60Hz	133°C - 101C°	32.5
230V/50Hz - 240V/60Hz	120°C - 103C°	134

SPARE PARTS

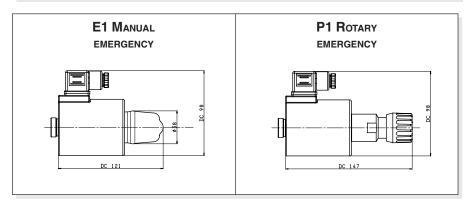
B14 AC Coil	Connection	
VOLTAGE	Hirschmann (Standard)	
24V/50-60Hz (A) 48V/50-60Hz (B)	M14640003 M14640007	
115V/50Hz 120V/60Hz (J)	M14640006	
230V/50Hz 240V/60Hz (Y)	M14640001	
	_	
COMPLETE KIT	Code	

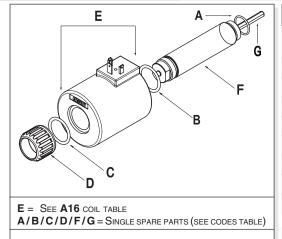
COMPLETE KIT	CODE	
Тиве Кіт	V85990011	
ROTARY EMERGENCY P1	V89990021	
Manual Emergency E1	M19050001	

12

CODE	Α	В	С	D	E	F	Mounting
Spare Parts	O RING	Coil	O Ring	RING NUT	TUBE	HEX. PUSCH ROD	AVAILABLE
AD3E*	Q25830024	SEE B14	Q25860036	M37050041	M831100001	M74520001 M74520002 M74520003	C - E - F - M G - H - I - L D

(*) serial No. 3 (AC voltage)


"A16" DC COILS FOR CETOP 5



Type of protection	
(in relation to the connector used)	IP 65
Number of cycles	18.000/h
Supply tolerance	±10%
Ambient temperature	-30°C ÷ 60°C
Duty cycle	100% ED
Insulation class wire	Н
Weight	0,9 Kg

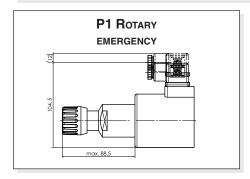
MOUNTING COMPATIBILITY		
CETOP 5	Ch. I page 28	
AD5.E	Ch. I page 31	
CDL.10	Ch. I page 65	
ADL.10.6	Ch. I page 66	
A.88	CH. IV PAGE 33	

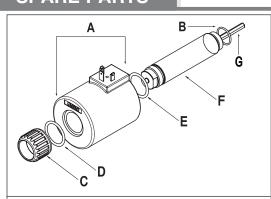
Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±7%
12V	106°C	45	3.2
24V	113°C	45	12,4
48V*	-	45	-
102V*	-	45	-
110V*	118°C	45	268
205V*	-	45	-
(*) Special voi	LTAGE		ETA16 - 03/2002/e

A16 DC/45	W Coll	CONNECTION
VOLTAGE		Hirschmann (Standard)
12V (L)		M14220002
24V (M)		M14220004
48V* (N)		M14220006
102V* (Z)		M14220013
110V* (P)		M14220008
205V* (X)		M14220014
(*)Special vo	DLTAGES	
	-	ETA16-CODE - 00/2007/e

COMPLETE KIT	AD5E	CDL10	ADL10	A88
P1 ROTARY EMERGENCY		V89990011		-
E1 MANUAL EMERGENCY		M19050002		-

CODE	Α	В	С	D	E	F	G	Mounting
Spare parts		O RING		RING NUT	COIL	TUBE	HEX. PUSCH ROD	AVAILABLE
AD5E ADL/CDL10	Q25830026	Q25860040	Q25860040	M37050033	See A16	M83160001	M74440002 M74440003 M74440004	C - E - F - M G - H - I - L D
A88							M74440006	-


"D19" DC SOLENOIDS



Type of protection (in relation to the connector used) IP 66 Number of cycle 18.000/h Supply tolerance $\pm 10\%$ Ambient temperature -54°C $\div 60$ °C Duty cycle 100% ED Max static pressure 210 bar Insulation class wire H Weight 1,63 Kg

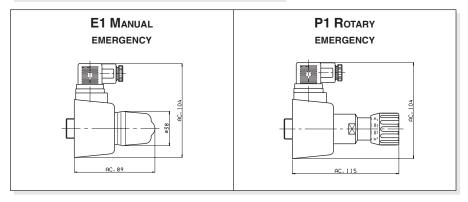
MOUNTING COMPATIB	BILITY
ADP.5.E	Ch. I page 36
ADP.5.V	Ch. I page 39

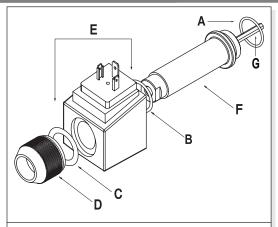
Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	105°C	42	3.43
24V	105°C	42	13.71
48V*	105°C	42	55
102V*	105°C	42	248
110V*	105°C	42	288
205V*	105°C	42	1000
(*) Special vo	LTAGE		ETD19 - 03/2000/e

COMPLETE	ADP5E	ADP5V
P1 ROTARY EMERGENCY	V8999	90012

D19	DC/42W Coil	Connection
Volt	AGE	Hirschmann (Standard)
12V ((L)	M14270001
24V ((M)	M14270002
48V*	(N)	M14270003
102V	* (Z)	M14270007
110V	* (P)	M14270005
205V	* (X)	M14270008
(*)Spi	ECIAL VOLTAGES	ETD19-CODE - 00/2007/e

CODE SPARE PARTS B/C/D/E/F/G		FOR ADP5E AND ADP5V
В	O RING (TUBE)	Q25830101
С	RING NUT	M37050022
D	O RING (RING NUT)	Q25830035
Е	O RING (COIL)	Q25860035
F	Тиве	M83170002
G	HEX. PUSCH ROD	M74380002




"K16" AC SOLENOIDS FOR CETOP 5

Type of protection	
(in relation to the connector used)	IP 66
Number of cycles	18.000/h
Supply tolerance	+10% / -10%
Ambient temperature	-54°C ÷ 60°C
Duty cycle	100% ED
Max. pressure static	210 bar
Insulation class wire	Н
Weight	0.8 Ka

MOUNTING COMPATIBI	LITY
CETOP 5	Ch. I page 28
AD5.E	Ch. I PAGE 31

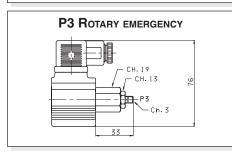
Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (VA)	IN RUSH CURRENT ALLO SPUNTO (VA)	RESISTANCE AT 20°C (OHM) ±10%
24V/50Hz	134°C	124	454	0.56
24V/60Hz*	115°C	103.5	440	0.55
48V/50Hz*	134°C	113	453	2.10
115V/50Hz - 120V/60Hz	121°C - 138°C	-	-	10.8
230V/50Hz - 240V/60Hz	121°C - 138°C	-	-	43.0
240V/50Hz*	134°C	120	456	47.39
(*) Special voltage				ETK16 - 01/2000/e

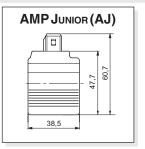
E =	SEE K16 COIL TABLE
A/B	S/C/D/F/G = SINGLE SPARE PARTS (SEE CODES TABLE)

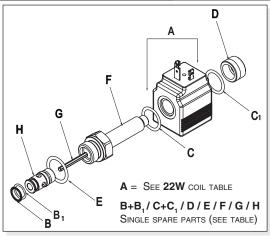
K16 AC COIL	CONNECTION
Voltage	Hirschmann (Standard)
24V/50Hz (A) 24V/60Hz* (F) 48V/50Hz* (B)	M14300010 M14300012 M14300014
115V/50Hz 120V/60Hz (J)	M14300029
230V/50Hz 240V/60Hz (Y)	M14300027
240V/50Hz* (E)	M14300025
(*)Special voltages	ETK16-CODE - 00/2007/e

COMPLETE KIT	AD5E
P1 ROTARY EMERGENCY	V89990002
E1 MANUAL EMERGENCY	M19050002

CODE	Α	В	С	D	E	F	G	Mounting
SPARE PARTS		O RING		RING NUT	COIL	TUBE	HEX. PUSCH ROD	Available
AD5E	Q25830026	Q25860026	Q25830187	M37050005	See K16	M83300000	M74210000 M74160000 M74700000	C - E - F G - H - I - L D


"22W" DC coils




Type of protection (in relation to the connector) IP 65 Number of cycles 18.000/h Supply tolerance +10% / -10% Ambient temperature $-30^{\circ}\text{C} \div 60^{\circ}\text{C}$ Duty cycle 100% ED Insulation class wire H Weight 0,2 Kg

MOUNTING COMPATIBILITY			
CRP/CRD BFP CARTRIDGE CAT.			
C2V.02	BFP CARTRIDGE CAT.		

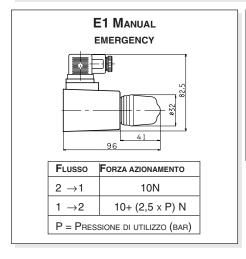
Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	116°C	22	6.3
24V	115°C	22	25.6
48V*	114°C	22	102
102V*	-	22	467.85
205V*	-	22	1954
(*) SPECIAL VO	LTAGE		ET22W - 02/2000/e

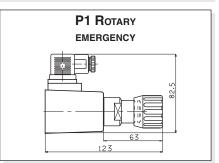
22W DC Coil	Connections		
VOLTAGE	STANDARD	AMP JUNIOR (AJ)	
12V (L) 24V (M) 48V* (N) 102V* (Z) 205V* (X)	M14040001 M14040002 M14040003 M14040006 M14040007	M14730001 M14730002 — — —	
(*) SPECIAL VOLTAGES	ET2	20W-CODE - 01/2008/e	

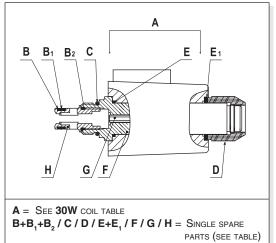
COMPLETE KIT	CRP02NA	CRD01/02	CRP02NC	C2V02	C3V02
P3 ROTARY EMERGENCY	V89990014	V89990005		-	

			1	1	i		
CODE	В	B ₁	C + C ₁	D	E+F	G	н
SPARE PARTS	Parbak	O RING	O RING	RING NUT	TUBE	HEX. PUSCH ROD	Valve
CRP/CRD	VALVE S	EAT	(R. NUT/COIL)		(+ O RING TUBE)		SEAT
CRP02NCE					R83100B83	M86150006	
CRP02NCS	Q25780026	Q25830015			R83100B82	M86150004	M70150003
CRP02NAE					R83100B84	M86150004	
CRD01A	Q25780026	Q25830015	Q25860055	M37050026			M70150004
CRD01B	Q25780030	Q25830021				M74440000	M70150005
CRD02A	Q25780026	Q25830015			R83100B85		M70150004
CRD02B	Q25780030	Q25830021				M74440001	M70150005
	l	I	1	I		l	

CODE SPARE PARTS C2V/C3V02	B PARBAK VALVE S	B ₁ O RING	C + C ₁ O RING (R. NUT/COIL)	D RING NUT	E O RING (TUBE)	F TUBE	G HEX. PUSCH ROD	H Valve Seat
C2V02NC C2V02NA	Q25780026	Q25830015	Q25860055	M37050026	Q25861010	M83040005	M50070002 M50070003	M70400002
C3V02	_	Q25880036 Q25880045	Q2000000	mo7 000020	Q20001010		M50070001	M70400001


"30W" DC coils




Type of protection (in relation to the connector used) IP 65 Number of cycles 18.000/h Supply tolerance +10% / -10% Ambient temperature -54°C \div 60°C Duty cycle 100% ED Insulation class wire H Weight 0,2 Kg

MOUNTING COMPATIBILITY		
CRD.04	BFP CARTRIDGE CAT.	

Voltage (V)	Max. winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V	108°C	30	4.7
24V	108°C	30	18.8
			IT30W - 02/1999

30W	DC Coil		
12	2V	24V	
M141		M14100011 (M)	
ET20W-CODE - 00/2007/e			

COMPLETE KIT	CDL04
P1 ROTARY EMERGENCY	V89990007
E1 MANUAL EMERGENCY	M19050001

	В	B ₁	B ₂	С	D	Е	E,	F	G	Н	
	Parbak	O RING	O RING	O RING	RING NUT	O RING	O RING	TUBE	HEX. PUSCH ROD	VALVE	
⋖		VALVE SEAT		(TUBO)	(COIL)	(RING NUT)	TOBL	HEX. FUSCH HOD	SEAT		
VERS.	Q25780026	Q25830015	005001017	Q25831017 Q2586		D M37050004 Q258300		26 025920192	D8220007	M74260000	M70150004
			025021017	Q25861010	M27050004	Q25830026	Q25830183	R83200997	M74360000		

Class H

UL RECOGNIZED COMPONENT MARK COILS

UL RECOGNIZED COMPONENT MARK

The UL Recognized Component Mark may be used on component parts that are part of a larger product or system. The UL Mark is the most widely recognised and accepted evidence of product's compliance with Canadian and USA safety requirements.

UL CATEGORY CODE (CCN)

- U.S.A. - Canada **VSV12 YSY18** UL category code number (CCN) is assigned in order to identify wich product categories are covered by UL's Certification. Our category covers valve parts, such as solenoid operators, coil assemblies, coil enclosures, valve assemblies and similar items intended to be used as parts of electrically operated valves as indicated in the individual Recognitions.

ARON UL FILE NUMBER MH45162

Visiting the UL web site (www.ul.com), linking certifications and writing the correct Aron UL File Number you can find our Certification.

The UL File Number is an alphanumeric designation assigned to any Company upon successful completion of a product evaluation or company certification.

"22 W" DC COILS **IDENTIFICATION MARK** REGGIO EMILIA (Italv) 2 TYPE **M.14.****.*** 4 12VDC ED 100% 21 W@ +50°C / 27 W@ -25°C 3 5 Tamb -25°C ÷ +50°C CLASS H 6 1 Recognized Component Mark c **FLI** us Type Coil code, voltage and connector type M.14.04.0021 12 VDC (Hirschmann) (Hirschmann) M.14.04.0022 24 VDC M.14.04.0031 (With flying leads) 12 VDC M.14.04.0032 24 VDC (With flying leads) 21W@+ 50°C Power at +50°C (ambient temperature) for 12 and 24V coils 27W@-25°C Power at -25°C (ambient temperature) for 12 and 24V coils ED 100% Duty cycle Tamb Ambient operating temperature -25°C ÷ +50°C

"2	"27W" DC COILS		
IDE	IDENTIFICATION MARK		
	3 1: 2 T	WWW.aron.it Region Entity (light) YPE M.14.* % * * * * * * * * * * * * * * * * * *	
1	c FL °us	Recognized Component Mark	
2	Туре	Coil code, voltage and connector type	
	M.14.31.0011	12 VDC (Hirschmann)	
	M.14.31.0012 M.14.07.0021	24 VDC (Hirschmann) 12 VDC (With flying leads)	
	M.14.07.0022	24 VDC (With flying leads)	
3	22W@+ 50°C	Power at +50°C (ambient temperature) for 12V coils	
	27W@+ 50°C	Power at +50°C (ambient temperature) for 24V coils	
	32W@- 25°C	Power at -25°C (ambient temperature) for 12 and 24V coils	
4	ED 100%	Duty cycle	
5	Tamb -25°C ÷ +50°C	Ambient operating temperature	
6	Class H	Insulation class wire	

Insulation class wire

Laboratories Inc. • is the accredited Unit to release the UL Mark, the most valued

product safety symbol.

TIPE ... TOTAL MARKET ... THE MARKET ... STORY ... STORY ... THE MARKET .

"22W" DC coils - UL Recognized

Type of protection	
(in relation to connector used)	IP 65
Number of cycle	18.000/h
Supply tolerance	-15% / +10%
Ambient temperature	-25°C ÷ 50°C
Power at +50°C (ambient temperature) for 12 and 24V coils	21W
Power at -25°C (ambient temperature) for 12 and 24V coils	27W
Duty cycle	100% ED
Insulation class wire	H
Weight	0,215 Kg

Voltage (V)	Max winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±10%
12V 24V	116°C 116°C	22 22	6.30 25.60
			ETUL22W - 00/2007/e

HIRSCHMANN (UR)

FLYING LEADS (UZ)

VARIANT AND VOLTAGE CODES (WICH HAVE TO PUT IN THE ORDERING CODE VALVE)

"22W" MOUNTING COMPATIBILITY	CRP, CRD, C2V02 and C3V02 see Ch. V "Cartridge valves"	
VARIANT CODE	UR = Hirschmann connectionUZ = Solenoid with flying leads (500 mm)Other variants relate to a special design	
VOLTAGE CODE	L = 12 VDCM = 24 VDCVoltage code is always stamped over on the coil	

"27W" DC coils - UL RECOGNIZED

	IP 65
Number of cycle	18.000/h
Supply tolerance	-15% / +10%
Ambient temperature	-25°C ÷ 50°C
Power at +50°C (ambient temperature) for 12V coil	22W
Power at +50°C (ambient temperature) for 24V coil	27W
Power at -25°C (ambient temperature) for 12 and 24V coils	32W
Duty cycle	100% ED
Insulation class wire	Н
Weight	0,215 Kg

Voltage (V)	Max winding temperature (Ambient temperature 25°C)	RATED POWER (W)	RESISTANCE AT 20°C (OHM) ±7%
12V 24V	123°C 123°C	27 27	5.30 21.30
			ET27WUL - 00/2007/e

VARIANT AND VOLTAGE CODES (WICH HAVE TO PUT IN THE ORDERING CODE VALVE)

"27W" MOUNTING COMPATIBILITY	AD2E ADC3E and CDL04 see Ch. I "Directional control" C3V03 see Ch. V "Cartridge valves" CDC3 see Ch. XI "Stackable valves"
VARIANT CODE	UR = Hirschmann connectionUZ = Solenoid with flying leads (250 mm)Other variants relate to a special design
VOLTAGE CODE	L = 12 VDC M = 24 VDC Voltage code is always stamped over on the coil

Plant ARON

Via Natta, 1

42124 Reggio Emilia - Italy

Tel. +39 0522 5058

Fax +39 0522 505856

www.aron.it

AR TEC GEN E0 1110 COD. P35030200

Brevini Fluid Power S.p.A.

Via Moscova, 6

42124 Reggio Emilia - Italy

Tel. +39 0522 270711

Fax +39 0522 270660

www.brevinifluidpower.com

 $in fo@\,brevin if luid power.com$